In this paper, by applying the technique of the sharp maximal function and the equivalent representation of the norm in the Lebesgue spaces with variable exponent, the boundedness of the parameterized Litflewood-Paley...In this paper, by applying the technique of the sharp maximal function and the equivalent representation of the norm in the Lebesgue spaces with variable exponent, the boundedness of the parameterized Litflewood-Paley operators, including the parameterized Lusin area integrals and the parameterized Littlewood-Paley gλ^*- functions, is established on the Lebesgue spaces with variable exponent. Furthermore, the boundedness of their commutators generated respectively by BMO functions and Lipschitz functions are also obtained.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
In this paper, we obtain the necessary and sufficient condition of the pre-compact sets in the variable exponent Lebesgue spaces, which is also called the Riesz-Kolmogorov theorem. The main novelty appearing in this a...In this paper, we obtain the necessary and sufficient condition of the pre-compact sets in the variable exponent Lebesgue spaces, which is also called the Riesz-Kolmogorov theorem. The main novelty appearing in this approach is the constructive approximation which does not rely on the boundedness of the Hardy-Littlewood maximal operator in the considered spaces such that we do not need the log-H¨older continuous conditions on the variable exponent. As applications, we establish the boundedness of Riemann-Liouville integral operators and prove the compactness of truncated Riemann-Liouville integral operators in the variable exponent Lebesgue spaces. Moreover, applying the Riesz-Kolmogorov theorem established in this paper, we obtain the existence and the uniqueness of solutions to a Cauchy type problem for fractional differential equations in variable exponent Lebesgue spaces.展开更多
基金supported by National Natural Foundation of China (Grant Nos. 11161042 and 11071250)
文摘In this paper, by applying the technique of the sharp maximal function and the equivalent representation of the norm in the Lebesgue spaces with variable exponent, the boundedness of the parameterized Litflewood-Paley operators, including the parameterized Lusin area integrals and the parameterized Littlewood-Paley gλ^*- functions, is established on the Lebesgue spaces with variable exponent. Furthermore, the boundedness of their commutators generated respectively by BMO functions and Lipschitz functions are also obtained.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
基金supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(Grant No.2017r098)Zunwei Fu was supported by National Natural Science Foundation of China(Grant Nos.11671185 and 11771195)+1 种基金National Science Foundation of Shandong Province(Grant No.ZR2017MA041)Jingshi Xu was supported by National Natural Science Foundation of China(Grant No.11761026)
文摘In this paper, we obtain the necessary and sufficient condition of the pre-compact sets in the variable exponent Lebesgue spaces, which is also called the Riesz-Kolmogorov theorem. The main novelty appearing in this approach is the constructive approximation which does not rely on the boundedness of the Hardy-Littlewood maximal operator in the considered spaces such that we do not need the log-H¨older continuous conditions on the variable exponent. As applications, we establish the boundedness of Riemann-Liouville integral operators and prove the compactness of truncated Riemann-Liouville integral operators in the variable exponent Lebesgue spaces. Moreover, applying the Riesz-Kolmogorov theorem established in this paper, we obtain the existence and the uniqueness of solutions to a Cauchy type problem for fractional differential equations in variable exponent Lebesgue spaces.