Background In vitro chondrocyte expansion is a major challenge in cell-based therapy for human articular cartilage repair. Classical culture conditions usually use animal serum as a medium supplement, which raises a n...Background In vitro chondrocyte expansion is a major challenge in cell-based therapy for human articular cartilage repair. Classical culture conditions usually use animal serum as a medium supplement, which raises a number of undesirable questions. In the present study, two kinds of defined, serum-free media were developed to expand chondrocytes in monolayer culture for the purpose of cartilage tissue engineering. Methods Bovine chondrocytes were expanded in serum-free media supplemented with fibroblast growth factor-2 and platelet-derived growth factor or fibroblast growth factor-2 and insulin-like growth factor. Expansion culture in a conventional 10% fetal bovine serum (FBS) medium served as control. Fibronectin coating was used to help cell adhesion in serum-free medium. Next, in vitro three-dimensional pellet culture was used to evaluate the chondrocyte capacity. Cell pellets were expanded in different media to re-express the differentiated phenotype (re-differentiation) and to form cartilaginous tissue. The pellets were assessed by glycosaminoglycans contents, collagen II, collagen I and collagen X immunohistological staining. Results Chondrocytes cultured in serum-free media showed no proliferation difference than cells grown with 10% FBS medium. In addition, chondrocytes expanded in both serum-free media expressed more differentiated phenotypes at the end of monolayer culture, as indicated by higher gene expression ratios of collagen type II to collagen type I. Pellets derived from chondrocytes cultured in both serum-free media displayed comparable chondrogenic capacities to pellets from cells expanded in 10% FBS medium. Conclusion These findings provide alternative culture approaches for chondrocytes in vitro expansion, which may benefit the clinical use of autologous chondrocytes implantation.展开更多
OBJECTIVE: To establish a serum-free culture system of dendritic cells (DCs) from chronic myeloid leukemia (CML) cells so that DCs vaccine may be applied to the adoptive immunotherapy of CML in the near future. METHOD...OBJECTIVE: To establish a serum-free culture system of dendritic cells (DCs) from chronic myeloid leukemia (CML) cells so that DCs vaccine may be applied to the adoptive immunotherapy of CML in the near future. METHODS: Fetal calf serum, serum-free medium and autologous serum were used for culture of DCs. The usage of cytokines was classified into two groups: group A (stem cell factor, granulocyte/macrophage colony-stimulating-factor, tumor necrosis factor-alpha and interleukin-4) and group B (granulocyte/macrophage colony-stimulating-factor, tumor necrosis factor-alpha and interleukin-4). The phenotypes of DCs were analyzed by using indirect immunofluorescence and flow cytometry. Mixed leukocyte responses were performed by methyl thiazolyl tetrazolium (MTT) assay. Chromosome analysis of DCs can be achieved by displaying G banding. T cells from CML patients were stimulated with autologous DCs and T-cell cytotoxicity was measured by (MTT) assay. RESULTS: CD34(+) cells or mononuclear cells were obtained from peripheral blood or bone marrow samples of eight patients of chronic-phase CML. Group A of serum-free medium was better than group B in expansion of total cell numbers and the rate of DCs. These results of serum-free medium were not significantly different from those of fetal calf serum medium, but the results of autologous serum medium were inferior to two groups above. The expression of major histocompatibility complex class II antigen on the surface of DCs was notable (> 50%), but the expression of CD83 and the costimulatory molecules CD86 was not noticeable (10% - 50%). Although CD1a(+)/CD14(-) DCs were potent stimulators of allogeneic lymphocytes, expansion of T cells from normal volunteers were not significant (average 27.2 fold at DCs: T cells ratio of 1:10). At day 12, CD1a(+) cells from three patients were studied by displaying G banding and Ph(+) cells in these populations were 100%, 98% and 60%, respectively. At an effector: target ratio of 40:1, 32% to 45% cytotoxicity was noted with DC-stimulated T cells against autologous leukemia cells. CONCLUSIONS: A stable serum-free culture system of CML-DCs was established. The expression of CD83 and CD86 on the surface of CML-DCs and DCs' potent stimulation of allogeneic lymphocytes were not notable. DCs in CML patients can be derived from the malignant clone and these malignant DCs could induce anti-leukemic reactivity in autologous T lymphocytes without the necessity for additional exogenous antigens.展开更多
文摘Background In vitro chondrocyte expansion is a major challenge in cell-based therapy for human articular cartilage repair. Classical culture conditions usually use animal serum as a medium supplement, which raises a number of undesirable questions. In the present study, two kinds of defined, serum-free media were developed to expand chondrocytes in monolayer culture for the purpose of cartilage tissue engineering. Methods Bovine chondrocytes were expanded in serum-free media supplemented with fibroblast growth factor-2 and platelet-derived growth factor or fibroblast growth factor-2 and insulin-like growth factor. Expansion culture in a conventional 10% fetal bovine serum (FBS) medium served as control. Fibronectin coating was used to help cell adhesion in serum-free medium. Next, in vitro three-dimensional pellet culture was used to evaluate the chondrocyte capacity. Cell pellets were expanded in different media to re-express the differentiated phenotype (re-differentiation) and to form cartilaginous tissue. The pellets were assessed by glycosaminoglycans contents, collagen II, collagen I and collagen X immunohistological staining. Results Chondrocytes cultured in serum-free media showed no proliferation difference than cells grown with 10% FBS medium. In addition, chondrocytes expanded in both serum-free media expressed more differentiated phenotypes at the end of monolayer culture, as indicated by higher gene expression ratios of collagen type II to collagen type I. Pellets derived from chondrocytes cultured in both serum-free media displayed comparable chondrogenic capacities to pellets from cells expanded in 10% FBS medium. Conclusion These findings provide alternative culture approaches for chondrocytes in vitro expansion, which may benefit the clinical use of autologous chondrocytes implantation.
基金ThisresearchwassupportedbyagrantfromtheShannxiProvincialScienceFoundationofPublicHealthBureau (No .0 0 12 2 )
文摘OBJECTIVE: To establish a serum-free culture system of dendritic cells (DCs) from chronic myeloid leukemia (CML) cells so that DCs vaccine may be applied to the adoptive immunotherapy of CML in the near future. METHODS: Fetal calf serum, serum-free medium and autologous serum were used for culture of DCs. The usage of cytokines was classified into two groups: group A (stem cell factor, granulocyte/macrophage colony-stimulating-factor, tumor necrosis factor-alpha and interleukin-4) and group B (granulocyte/macrophage colony-stimulating-factor, tumor necrosis factor-alpha and interleukin-4). The phenotypes of DCs were analyzed by using indirect immunofluorescence and flow cytometry. Mixed leukocyte responses were performed by methyl thiazolyl tetrazolium (MTT) assay. Chromosome analysis of DCs can be achieved by displaying G banding. T cells from CML patients were stimulated with autologous DCs and T-cell cytotoxicity was measured by (MTT) assay. RESULTS: CD34(+) cells or mononuclear cells were obtained from peripheral blood or bone marrow samples of eight patients of chronic-phase CML. Group A of serum-free medium was better than group B in expansion of total cell numbers and the rate of DCs. These results of serum-free medium were not significantly different from those of fetal calf serum medium, but the results of autologous serum medium were inferior to two groups above. The expression of major histocompatibility complex class II antigen on the surface of DCs was notable (> 50%), but the expression of CD83 and the costimulatory molecules CD86 was not noticeable (10% - 50%). Although CD1a(+)/CD14(-) DCs were potent stimulators of allogeneic lymphocytes, expansion of T cells from normal volunteers were not significant (average 27.2 fold at DCs: T cells ratio of 1:10). At day 12, CD1a(+) cells from three patients were studied by displaying G banding and Ph(+) cells in these populations were 100%, 98% and 60%, respectively. At an effector: target ratio of 40:1, 32% to 45% cytotoxicity was noted with DC-stimulated T cells against autologous leukemia cells. CONCLUSIONS: A stable serum-free culture system of CML-DCs was established. The expression of CD83 and CD86 on the surface of CML-DCs and DCs' potent stimulation of allogeneic lymphocytes were not notable. DCs in CML patients can be derived from the malignant clone and these malignant DCs could induce anti-leukemic reactivity in autologous T lymphocytes without the necessity for additional exogenous antigens.