The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials ...The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials (LHM) with εr1 = -1/(1 +δ) +iγ and μr1 = -(1 + δ) + iγ. In this special waveguide, two-directional super-energy flows are excited by a three-dimensional horizontal electric dipole at the same time, which has transmission patterns different from those of two-dimensional source and three-dimensional vertical electric dipole. We also show that the retardation and loss in LHM are sensitive to the amplitude of super power densities, and the dimensions of waveguide determine the propagating modes, which makes super energy flows more practical.展开更多
Transmission properties of fractal Cantor distribution with left-handed materials (LHM) are investigated. The transmittance and reflectance spectra can be calculated by using the optical transmission matrix method. ...Transmission properties of fractal Cantor distribution with left-handed materials (LHM) are investigated. The transmittance and reflectance spectra can be calculated by using the optical transmission matrix method. Comparing with the conventional Cantor multilayers, these structures with LHM have double functions of stopbands and defects. Through adjusting the thickness of dielectric layers, the properties of stopbands and defects can be obtained, respectively. For stopbands, a broad stopband filter is studied. For defect modes, multi-frequencies narrow passband filters are proposed.展开更多
The authors' theoretical investigation on the high-frequency response of magnetized metallic magnetic films showed that magnetic films may become left-handed materials (LHMs) near the ferromagnetic resonance freque...The authors' theoretical investigation on the high-frequency response of magnetized metallic magnetic films showed that magnetic films may become left-handed materials (LHMs) near the ferromagnetic resonance frequency of incident waves with right-handed circular polarization (RCP) and linear polarization (LP). The frequency range where LHM exists depends on the waves polarization, the magnetic damping coefficient, and the ferromagnetic characteristic frequency corn of the film. There also exists a critical damping coefficient ac, above which the left-handed properties disappear completely.展开更多
In this paper, we present the electromagnetic analysis of a rectangular cavity partially filled with a left-handed material slab. Our theoretical investigation shows that there exist novel resonant modes in the cavity...In this paper, we present the electromagnetic analysis of a rectangular cavity partially filled with a left-handed material slab. Our theoretical investigation shows that there exist novel resonant modes in the cavity, and such a cavity becomes a subwavelength cavity. The eigenvalue equation of the cavity is derived and the resonant frequencies of the novel modes are calculated by using numerical simulation. We also discuss the stability of the novel resonant modes and show the best condition under which a useful rectangular cavity of subwavelength dimensions with tolerable stability is obtained.展开更多
We report the coexistence of TE and TM surface modes in certain same frequency domain at the interface between one isotropic regular medium and another biaxially anistotropic left-handed medium. The conditions for the...We report the coexistence of TE and TM surface modes in certain same frequency domain at the interface between one isotropic regular medium and another biaxially anistotropic left-handed medium. The conditions for the existence of TE and TM polarized surface waves in biaxially anisotropic left-handed materials are identified, respectively. The Poynting vector and the energy density associated with surface modes are calculated. Depending on the system parameters, either TE or TM surface modes can have the time averaged Poynting vector directed to or opposite to the mode phase velocity. It is seen that the characteristics of surface waves in biaxially anisotropic left-handed media are significantly different from that in isotropic left-handed media.展开更多
We present beam solutions of the strongly nonlocal nonlinear Schrodinger equation in left-handed mate- rims (LHMs). Different Laguerre-Ganssian (LG) necklace beams, such as symmetric and asymmetric single layer an...We present beam solutions of the strongly nonlocal nonlinear Schrodinger equation in left-handed mate- rims (LHMs). Different Laguerre-Ganssian (LG) necklace beams, such as symmetric and asymmetric single layer and multilayer necklace beams are created by the superposition of two single beams with different topological charges. Such superpositions are then propagated through LHMs, displaying linear diffraction. It is found that the superposition of two LGnm beams with opposite topological charges does not show rotational behavior and that there exists rotation for other topological charge combinations. Our theory predicts that the accessible solitons cannot exist in LHMs.展开更多
By incorporating the higher order concept,the piecewise linear recursive convolution(PLRC)method and CrankNicolson Douglas-Gunn(CNDG)algorithm,the unconditionally stable complex frequency shifted nearly perfectly matc...By incorporating the higher order concept,the piecewise linear recursive convolution(PLRC)method and CrankNicolson Douglas-Gunn(CNDG)algorithm,the unconditionally stable complex frequency shifted nearly perfectly matched layer(CFS-NPML)is proposed to terminate the left-handed material(LHM)domain.The proposed scheme takes advantages of CFSNPML formulation,the higher order concept PLRC method and the unconditionally stable CNDG algorithm in terms of absorbing performance,computational efficiency,calculation accuracy and convenient implementation.A numerical example is carried out to demonstrate the effectiveness and efficiency of the proposed scheme.The results indicate that the proposed scheme can not only have considerable absorbing performance but also maintain the unconditional stability of the algorithm with the enlargement of time steps.展开更多
We devise three sorts of doped left-handed materials (DLHMs) by introducing inductors and capacitors into the traditional left-handed material (LHM) as heterogeneous elements. Some new properties are presented thr...We devise three sorts of doped left-handed materials (DLHMs) by introducing inductors and capacitors into the traditional left-handed material (LHM) as heterogeneous elements. Some new properties are presented through finitedifference time-domain (FDTD) simulations. On the one hand, the resonance in the traditional LHM is weakened and the original pass band is narrowed by introducing inductors. On the other hand, the original pass band of the LHM can be shifted and a new pass band can be generated by introducing capacitors. When capacitors and inductors are introduced simultaneously, the resonance of traditional LHM is somewhat weakened and the number of original pass bands as well as its bandwidth can be changed.展开更多
In this paper, numerical modelling of left-handed materials (LHMs) is presented using in-house and commercial software packages. Approaches used include the finite-difference time-domain (FDTD) method, finite elem...In this paper, numerical modelling of left-handed materials (LHMs) is presented using in-house and commercial software packages. Approaches used include the finite-difference time-domain (FDTD) method, finite element method (FEM) and method of moments (MoMs). Numerical simulation includes verification of negative refraction and "perfect lenses" construction, investigation of evanescent wave behaviour in layered LHMs, reversed Shell's Law in electromagnetic band gap (EBG)-like structures and construction of LHMs using modified split ring resonators (SRRs). Numerical results were verified to be in good agreement with theory, At the end of this paper, potential applications of LHMs in microwave engineering are discussed.展开更多
High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has c...High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials.展开更多
Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gas...Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis.Fibrous materials with unique flexibility,processability,multifunctionality,and practicability have been widely applied for fibrous materials-based hydroelectricity generation(FHG).In this review,the power generation mechanisms,design principles,and electricity enhancement factors of FHG are first introduced.Then,the fabrication strategies and characteristics of varied constructions including 1D fiber,1D yarn,2D fabric,2D membrane,3D fibrous framework,and 3D fibrous gel are demonstrated.Afterward,the advanced functions of FHG during water harvesting,proton dissociation,ion separation,and charge accumulation processes are analyzed in detail.Moreover,the potential applications including power supply,energy storage,electrical sensor,and information expression are also discussed.Finally,some existing challenges are considered and prospects for future development are sincerely proposed.展开更多
Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,prov...Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips.展开更多
Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilizati...Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilization,are crucially important for the development of a more sustainable world.In this study,we employed a straightforward direct carbonization method within the temperature range of 700-1000℃to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries(PIBs).The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons(CTRCs)were systematically explored by structural and morphological characterization,alongside electrochemical performances assessment.Based on the co-regulation between the turbine layers,crystal structure,pore structure,functional groups,and electrical conductivity of CTR-derived carbon carbonized at 900℃(CTRC-900H),the electrode material with high reversible capacity of 265.6m Ah·g^(-1)at 50 m A·g^(-1),a desirable cycling stability with 93.8%capacity retention even after 100 cycles,and the remarkable rate performance for PIBs were obtained.Furthermore,cyclic voltammetry(CV)at different scan rates and galvanostatic intermittent titration technique(GITT)have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs.Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes,particularly under high current densities,with the potassium storage mechanism characterized by an“adsorption-weak intercalation”mechanism.This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes,while also provides valuable insights into the new avenues for the high value-added utilization of CTR.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab...Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.展开更多
Two kinds of controllable doped left-handed materials (DLHMs) were designed by inserting inductors and capacitors into the traditional left-handed material (LHM) as heterogeneous elements respectively, which are D...Two kinds of controllable doped left-handed materials (DLHMs) were designed by inserting inductors and capacitors into the traditional left-handed material (LHM) as heterogeneous elements respectively, which are DLHM with inductors (LDLHM) and DLHM with capacitors (CDLHM). The characteristics of transmission spectrum were studied by using finite-difference time-domain method (FDTD). Compared with the traditional LHM, the resonance strength of the LDLHM is weakened and the pass-band is narrowed, but with the increase of the value of the inserted inductors, the bandwidth is expanded. As capacitors inserted into the LHM, the pass-band of the CDLHM is expanded, but the pass-band is shifted to low frequency and the bandwidth is narrowed with the increase of the value of the capacitors, meanwhile, a new generated pass-band is also shifted to low frequency. Therefore, a quantized controllable doped left-handed material can be achieved.展开更多
Stopband phenomena are reported in the passband of left-handed metamaterials. The samples with linear defect are designed by removing one layer of split ring resonators (SRRs). It is shown that the left-handed trans...Stopband phenomena are reported in the passband of left-handed metamaterials. The samples with linear defect are designed by removing one layer of split ring resonators (SRRs). It is shown that the left-handed transmission peaks have a distinct transform with the relative deviation of the SRRs centre from the wire centre 8, from a single left-handed peak, double left-handed peaks with different magnitude to no transmission peak, i.e. left-handed properties of metamaterials disappear. Numerical simulation shows that the change of 8 makes the effective permeability shift at a frequency range, where stopband occurs. It is thought that the stopband in left-handed passband is due to the symmetry breaking between SRRs and wires in the metamaterials.展开更多
A method of fabricating dual-band left-handed metematerials (LHMs) is investigated numerically and experimen- tally by single-sided tree-like fractals. The resulting structure features multiband magnetic resonances ...A method of fabricating dual-band left-handed metematerials (LHMs) is investigated numerically and experimen- tally by single-sided tree-like fractals. The resulting structure features multiband magnetic resonances and two electric resonances. By appropriately adjusting the dimensions, two left-handed (LH) bands with simultaneous negative per- mittivity and permeability are engineered and are validated by full-wave eigenmode analysis and measurement as well in the microwave frequency range. To study the multi-resonant mechanism in depth, the LHM is analysed from three different perspectives of field distribution analysis, circuit model analysis, and geometrical parameters evaluation. The derived formulae are consistent with all simulated results and resulting electromagnetic phenomena, indicating the ef- fectiveness of the established theory. The method provides an alternative to the design of multi-band LHM and has the advantage of not requiring two individual resonant particles and electrically continuous wires, which in turn facilitates planar design and considerably simplifies the fabrication.展开更多
An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameter...An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameters of the metamaterials, and topology optimization technique was introduced to design the microstructure configurations of the materials with desired electromagnetic characteristics. The material considered was a periodic array of dielectric substrates attached with metal film pieces. By controlling the arrangements of the metal film pieces in the design domain, the potential microstructure with desired electromagnetic characteristics can be obtained finally. Two different LHMs were obtained with maximum bandwidth of negative refraction, and the experimental results show that negative refractive indices appear while the metamaterials have simultaneously negative permittivity and negative permeability. Topology optimization technique is found to be an effective tool for configuration design of LHMs.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60671015, 60225001 and 60621002)The State Key Development Program for Basic Research of China (Grant No 2004CB719802)the Doctorate Found of State Education Commission of China (Grant No 20040286010)
文摘The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials (LHM) with εr1 = -1/(1 +δ) +iγ and μr1 = -(1 + δ) + iγ. In this special waveguide, two-directional super-energy flows are excited by a three-dimensional horizontal electric dipole at the same time, which has transmission patterns different from those of two-dimensional source and three-dimensional vertical electric dipole. We also show that the retardation and loss in LHM are sensitive to the amplitude of super power densities, and the dimensions of waveguide determine the propagating modes, which makes super energy flows more practical.
基金Project supported by the National Natural Science Foundation of China (Grant No.61077068)the Natural Science Foundation of Shanghai Municipality (Grant No.10ZR1411900)+1 种基金the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2231100)
文摘Transmission properties of fractal Cantor distribution with left-handed materials (LHM) are investigated. The transmittance and reflectance spectra can be calculated by using the optical transmission matrix method. Comparing with the conventional Cantor multilayers, these structures with LHM have double functions of stopbands and defects. Through adjusting the thickness of dielectric layers, the properties of stopbands and defects can be obtained, respectively. For stopbands, a broad stopband filter is studied. For defect modes, multi-frequencies narrow passband filters are proposed.
基金Project supported by the National Basic Research Program (973) ofChina (No. 2004CB719805) and the National Natural Science Foun-dation of China (No. 60471020)
文摘The authors' theoretical investigation on the high-frequency response of magnetized metallic magnetic films showed that magnetic films may become left-handed materials (LHMs) near the ferromagnetic resonance frequency of incident waves with right-handed circular polarization (RCP) and linear polarization (LP). The frequency range where LHM exists depends on the waves polarization, the magnetic damping coefficient, and the ferromagnetic characteristic frequency corn of the film. There also exists a critical damping coefficient ac, above which the left-handed properties disappear completely.
文摘In this paper, we present the electromagnetic analysis of a rectangular cavity partially filled with a left-handed material slab. Our theoretical investigation shows that there exist novel resonant modes in the cavity, and such a cavity becomes a subwavelength cavity. The eigenvalue equation of the cavity is derived and the resonant frequencies of the novel modes are calculated by using numerical simulation. We also discuss the stability of the novel resonant modes and show the best condition under which a useful rectangular cavity of subwavelength dimensions with tolerable stability is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No 60508005) and the Scientific Foundation for Returned 0verseas Scholars of Heilongjiang Province, China (Grant No LC05C02).
文摘We report the coexistence of TE and TM surface modes in certain same frequency domain at the interface between one isotropic regular medium and another biaxially anistotropic left-handed medium. The conditions for the existence of TE and TM polarized surface waves in biaxially anisotropic left-handed materials are identified, respectively. The Poynting vector and the energy density associated with surface modes are calculated. Depending on the system parameters, either TE or TM surface modes can have the time averaged Poynting vector directed to or opposite to the mode phase velocity. It is seen that the characteristics of surface waves in biaxially anisotropic left-handed media are significantly different from that in isotropic left-handed media.
基金Supported by the Science Research Foundation of Shunde Polytechnic (2008-KJ06), ChinaWork at the Texas A&M University at Qatar is supported by the NPRP 25-6-7-2 project with the Qatar National Research Foundation
文摘We present beam solutions of the strongly nonlocal nonlinear Schrodinger equation in left-handed mate- rims (LHMs). Different Laguerre-Ganssian (LG) necklace beams, such as symmetric and asymmetric single layer and multilayer necklace beams are created by the superposition of two single beams with different topological charges. Such superpositions are then propagated through LHMs, displaying linear diffraction. It is found that the superposition of two LGnm beams with opposite topological charges does not show rotational behavior and that there exists rotation for other topological charge combinations. Our theory predicts that the accessible solitons cannot exist in LHMs.
文摘By incorporating the higher order concept,the piecewise linear recursive convolution(PLRC)method and CrankNicolson Douglas-Gunn(CNDG)algorithm,the unconditionally stable complex frequency shifted nearly perfectly matched layer(CFS-NPML)is proposed to terminate the left-handed material(LHM)domain.The proposed scheme takes advantages of CFSNPML formulation,the higher order concept PLRC method and the unconditionally stable CNDG algorithm in terms of absorbing performance,computational efficiency,calculation accuracy and convenient implementation.A numerical example is carried out to demonstrate the effectiveness and efficiency of the proposed scheme.The results indicate that the proposed scheme can not only have considerable absorbing performance but also maintain the unconditional stability of the algorithm with the enlargement of time steps.
基金supported by the National Natural Science Foundation of China (Grant Nos 60671055 and 60771060)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos 20070013002 and 20070013004)
文摘We devise three sorts of doped left-handed materials (DLHMs) by introducing inductors and capacitors into the traditional left-handed material (LHM) as heterogeneous elements. Some new properties are presented through finitedifference time-domain (FDTD) simulations. On the one hand, the resonance in the traditional LHM is weakened and the original pass band is narrowed by introducing inductors. On the other hand, the original pass band of the LHM can be shifted and a new pass band can be generated by introducing capacitors. When capacitors and inductors are introduced simultaneously, the resonance of traditional LHM is somewhat weakened and the number of original pass bands as well as its bandwidth can be changed.
基金Project supported by the Royal Society, the Engineering and PhysicsScience Research Council (EPSRC) and the Leverhulme Trust, UK
文摘In this paper, numerical modelling of left-handed materials (LHMs) is presented using in-house and commercial software packages. Approaches used include the finite-difference time-domain (FDTD) method, finite element method (FEM) and method of moments (MoMs). Numerical simulation includes verification of negative refraction and "perfect lenses" construction, investigation of evanescent wave behaviour in layered LHMs, reversed Shell's Law in electromagnetic band gap (EBG)-like structures and construction of LHMs using modified split ring resonators (SRRs). Numerical results were verified to be in good agreement with theory, At the end of this paper, potential applications of LHMs in microwave engineering are discussed.
基金supported by the National Natural Science Foundation of China(22378431,52004338,51622406,21673298)Hunan Provincial Natural Science Foundation(2023JJ40210,2022JJ20075)+3 种基金the Science and Technology Innovation Program of Hunan Province(2023RC3259)the Key R&D plan of Hunan Province(2024JK2096)Scientifc Research Fund of Hunan Provincial Education Department(23B0699)Central South University Innovation-Driven Research Programme(2023CXQD008).
文摘High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials.
基金funding support from the National Key Research and Development Program of China(No.2022YFB3805800)the National Natural Science Foundation of China(52173059)+1 种基金The Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions(21KJA540002)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB555).
文摘Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis.Fibrous materials with unique flexibility,processability,multifunctionality,and practicability have been widely applied for fibrous materials-based hydroelectricity generation(FHG).In this review,the power generation mechanisms,design principles,and electricity enhancement factors of FHG are first introduced.Then,the fabrication strategies and characteristics of varied constructions including 1D fiber,1D yarn,2D fabric,2D membrane,3D fibrous framework,and 3D fibrous gel are demonstrated.Afterward,the advanced functions of FHG during water harvesting,proton dissociation,ion separation,and charge accumulation processes are analyzed in detail.Moreover,the potential applications including power supply,energy storage,electrical sensor,and information expression are also discussed.Finally,some existing challenges are considered and prospects for future development are sincerely proposed.
基金supported by the National Natural Science Foundation of China(Grant No.61925307).
文摘Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips.
基金financially supported by the Research Project Supported by Shanxi Scholarship Council of China(No.2022-049)the Natural Science Foundation of Shanxi Province,China(No.20210302123167)。
文摘Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilization,are crucially important for the development of a more sustainable world.In this study,we employed a straightforward direct carbonization method within the temperature range of 700-1000℃to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries(PIBs).The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons(CTRCs)were systematically explored by structural and morphological characterization,alongside electrochemical performances assessment.Based on the co-regulation between the turbine layers,crystal structure,pore structure,functional groups,and electrical conductivity of CTR-derived carbon carbonized at 900℃(CTRC-900H),the electrode material with high reversible capacity of 265.6m Ah·g^(-1)at 50 m A·g^(-1),a desirable cycling stability with 93.8%capacity retention even after 100 cycles,and the remarkable rate performance for PIBs were obtained.Furthermore,cyclic voltammetry(CV)at different scan rates and galvanostatic intermittent titration technique(GITT)have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs.Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes,particularly under high current densities,with the potassium storage mechanism characterized by an“adsorption-weak intercalation”mechanism.This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes,while also provides valuable insights into the new avenues for the high value-added utilization of CTR.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
基金partly supported by the National Natural Science Foundation of China(Grant No.52272225).
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
基金supported by the National Natural Science Fundation of China (60871081)the Research Innovation Fund for College Students of Beijing University of Posts and Telecommunications (2010)the Beijing Natural Science Foundation (Design and Fabrication of Miniature Smart Antenna Based on Metamaterials,4112039)
文摘Two kinds of controllable doped left-handed materials (DLHMs) were designed by inserting inductors and capacitors into the traditional left-handed material (LHM) as heterogeneous elements respectively, which are DLHM with inductors (LDLHM) and DLHM with capacitors (CDLHM). The characteristics of transmission spectrum were studied by using finite-difference time-domain method (FDTD). Compared with the traditional LHM, the resonance strength of the LDLHM is weakened and the pass-band is narrowed, but with the increase of the value of the inserted inductors, the bandwidth is expanded. As capacitors inserted into the LHM, the pass-band of the CDLHM is expanded, but the pass-band is shifted to low frequency and the bandwidth is narrowed with the increase of the value of the capacitors, meanwhile, a new generated pass-band is also shifted to low frequency. Therefore, a quantized controllable doped left-handed material can be achieved.
基金Supported by the National Natural Science Foundation of China for Distinguished Young Scholar of China under Grant No 50025207, and the National Basic Research Programme of China under Grant No 2004CB719800.
文摘Stopband phenomena are reported in the passband of left-handed metamaterials. The samples with linear defect are designed by removing one layer of split ring resonators (SRRs). It is shown that the left-handed transmission peaks have a distinct transform with the relative deviation of the SRRs centre from the wire centre 8, from a single left-handed peak, double left-handed peaks with different magnitude to no transmission peak, i.e. left-handed properties of metamaterials disappear. Numerical simulation shows that the change of 8 makes the effective permeability shift at a frequency range, where stopband occurs. It is thought that the stopband in left-handed passband is due to the symmetry breaking between SRRs and wires in the metamaterials.
基金Project supported by the National Natural Science Foundation of China(Grant No.60971118)the Innovation Foundation for Postgraduate's Dissertation of Air Force Engineering University,China(Grant No.DY12101)
文摘A method of fabricating dual-band left-handed metematerials (LHMs) is investigated numerically and experimen- tally by single-sided tree-like fractals. The resulting structure features multiband magnetic resonances and two electric resonances. By appropriately adjusting the dimensions, two left-handed (LH) bands with simultaneous negative per- mittivity and permeability are engineered and are validated by full-wave eigenmode analysis and measurement as well in the microwave frequency range. To study the multi-resonant mechanism in depth, the LHM is analysed from three different perspectives of field distribution analysis, circuit model analysis, and geometrical parameters evaluation. The derived formulae are consistent with all simulated results and resulting electromagnetic phenomena, indicating the ef- fectiveness of the established theory. The method provides an alternative to the design of multi-band LHM and has the advantage of not requiring two individual resonant particles and electrically continuous wires, which in turn facilitates planar design and considerably simplifies the fabrication.
基金Funded by the National Natural Science Foundation of China (Nos.90605002, 90816025 and 10721062)the National Basic Research Programof China (No. 2006CB601205)
文摘An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameters of the metamaterials, and topology optimization technique was introduced to design the microstructure configurations of the materials with desired electromagnetic characteristics. The material considered was a periodic array of dielectric substrates attached with metal film pieces. By controlling the arrangements of the metal film pieces in the design domain, the potential microstructure with desired electromagnetic characteristics can be obtained finally. Two different LHMs were obtained with maximum bandwidth of negative refraction, and the experimental results show that negative refractive indices appear while the metamaterials have simultaneously negative permittivity and negative permeability. Topology optimization technique is found to be an effective tool for configuration design of LHMs.