The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight...The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas.展开更多
The slip rate of Yema River-Daxue Mountain fault in the western segment of Qilian Mountains was determined by the dated offset of river risers or gullies. Results indicate that the left-lateral fault slip rate is 2.82...The slip rate of Yema River-Daxue Mountain fault in the western segment of Qilian Mountains was determined by the dated offset of river risers or gullies. Results indicate that the left-lateral fault slip rate is 2.82± 0.20 mm/a at Dazangdele site, 2.00 ± 0.24 mm/a at Shibandun site, and 0.50± 0.36 and 2.80±0.33 mm/a at two sites in Zhazihu. The ideal average slip rate of the whole fault is 2.81 ± 0.32 mm/a. The lower slip rate confirms part of the displacement of Altyn Tagh fault was transformed into an uplifting of the strap mountains in the western segment of Qilian Mountains, whereas another part transformed into sinistral displacement of Haiyuan fault. This study illustrates that the slip of large strike-slip faults in the northeastern margin of the plateau transforms into crust thickening at the tip of the fault without large-scale propagation to the outer parts of the plateau.展开更多
Located on the western of Sichuan, the east border of Tibet plateau, Xianshuihe fault is a significant strong earthquake zone. From Huiyuansi pull\|apart basin in Qianning, Xianshuihe fault can be divided two segments...Located on the western of Sichuan, the east border of Tibet plateau, Xianshuihe fault is a significant strong earthquake zone. From Huiyuansi pull\|apart basin in Qianning, Xianshuihe fault can be divided two segments\|NW section and SE section: the construction of the former is single and a main fault; the construction of the latter is complex and composed by three parallel faults, its main fault is named as Selaha—Kangding fault, which distributes along Jinlongsi, Sehala, Mugecuo and Kangding. Yalahe fault, located at the NE direction of the main fault, and Zeduotang fault, located at the SW direction of the main fault, are all secondary faults, which are 9~13km away from the main fault. At the south of Kangding, the segment of Xianshuihe fault is a single main section, called as Moxi fault. On the basis of recent researching results, this paper mainly discusses the slip rate and recurrence interval of strong earthquake of the SE segment (Qianning—Kangding) on Xianshuihe.展开更多
Repeating microearthquakes were identified along the edge of the rupture area of the 2008 MW7.9 Wenchuan earthquake. Slip rates at depths derived from seismic moments and recurrence intervals are found to be systemati...Repeating microearthquakes were identified along the edge of the rupture area of the 2008 MW7.9 Wenchuan earthquake. Slip rates at depths derived from seismic moments and recurrence intervals are found to be systematically larger than those observed at surface. This large deep slip rate may explain the odds about the occurrence of this unanticipated event. Our observations here suggested that seismic hazard could be underestimated if surface measurements alone are employed.展开更多
The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Q...The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Quaternary activity, paleoseismology, and deformation characteristics of the fault provide important clues for understanding the tectonic process of the eastern Tian Shan orogen and implementing seismic mitigation. Through interpretation of high-resolution satellite images, unmanned aerial vehicle measurements, and detailed geological and geomorphic investigations, we suggest that the fault exhibits clear left-lateral slip along its western segment. Paleoseismic trenches dug near Xiongkuer reveal evidence of six large paleoearthquakes. The four latest paleoearthquakes were dated: the oldest event occurred at 4663 BC–3839 BC. Data on the horizontal offsets along the probable 1842 Barkol earthquake coseismic rupture suggest clear multiple relationships between cumulative offsets and possible ~4 m of coseismic left-lateral slip per event. From the cumulative offsets and 14 C sample ages, we suggest an average Holocene left-lateral slip rate of 2.4–2.8 mm/a on the SBF, accounting for ~80% of lateral deformation within the entire eastern Tian Shan fault system. This result is comparable with the shortening rate of 2–4 mm/a in the whole eastern Tian Shan, indicating an equal role of strike-slip tectonics and compressional tectonics in this orogen, and that the SBF may accommodate substantial lateral tectonic deformation.展开更多
Slip rate along the major active fault is an important parameter in the quantitative study of active tectonics.It is the average rate of fault slip during a certain period of time,reflecting the rate of strain energy ...Slip rate along the major active fault is an important parameter in the quantitative study of active tectonics.It is the average rate of fault slip during a certain period of time,reflecting the rate of strain energy accumulation on the fault zone.It cannot only be directly applied to evaluate the activity of the fault,the probabilistic seismic hazard analysis,but also important basic data for the study of geodynamics.However,due to the nonstandardized process of obtaining fault slip rates for a given strike-slip fault,the results could be diverse based on various methods by different researchers.In this review,we analyzed the main advances in the approaches to obtain fault slip rate.We found that there are four main sources affecting the final results of slip rate:the displacement along the fault,the dating of the corresponding displacement,the fitting of the displacement and corresponding dating results,and paleoslip analysis.The main advances in obtaining fault slip rates are based on improving the reli-ability of the above four main factors.To obtain a more reasonable and reliable slip rate for a given fault,it is necessary to select a suitable method according to the specific situation.展开更多
The geometry of the Qianning-Kangding segment of the Xianshuihe fault zone is quite complex, and it is composed of four secondary-faults, i.e., the Yalahe fault, Selaha-Kangding fault, Zeduotang fault and Moxi fault. ...The geometry of the Qianning-Kangding segment of the Xianshuihe fault zone is quite complex, and it is composed of four secondary-faults, i.e., the Yalahe fault, Selaha-Kangding fault, Zeduotang fault and Moxi fault. On this segment, three strong earthquakes with M(7.0 occurred in 1725, 1786 and 1955, respectively. Based on a study of fault landform and geochronology (14C and Thermoluminesense), this paper documents the average horizontal slip rates during the late-Quaternary on all the secondary-faults of the Qianning-Kangding segment as follows: Yalahe fault: (2.0(0.2) mm/a; Selaha-Kangding fault: (5.5(0.6) mm/a; Zeduotang fault: (3.6(0.3) mm/a; Moxi fault: (9.9(0.6) mm/a. The results from the investigation of surface ruptures of historical earthquakes, coseismic-slip and paleo-earthquakes show that the strong-earthquake recurrence intervals are thousands of years on the Yalahe fault, and 230 to 350 years on the Selaha-Kangding and Zeduotang faults. In the next one hundred years, the recurrence of a strong-earthquake on these faults appears impossible. However, the strong-earthquake recurrence interval on the Moxi fault is about 300 years. Up to now, it has been 214 years since the last earthquake (magnitude 7) occurred in 1786, therefore, this fault is now approaching the condition favorable for the next strong earthquake recurrence.展开更多
65 km Semangko Fault is part of southern segments of Sumatran Fault Zone(SFZ)which is complex corresponds to the transition from the strike-slip regime of the SFZ to the normal faulting tectonics of the Sunda Strait.T...65 km Semangko Fault is part of southern segments of Sumatran Fault Zone(SFZ)which is complex corresponds to the transition from the strike-slip regime of the SFZ to the normal faulting tectonics of the Sunda Strait.The recent publication showed branches of Semangko Fault:West Semangko Fault(WSF)and East Semangko Fault(ESF).This study estimated geodetic slip rate and locking depth of ESF using Global Positioning System(GPS)time series data from 2007 to 2019 from all available GPS sites.GPS velocities refer to Sundaland Plate were used to estimate the fault parameters of the WSF and ESF simultaneously.Non-uniformity of velocity direction shows the complexities of Semangko Fault possibly caused by the contribution of all faults around ESF.An ESF geodetic slip rate,which is 12.5±2 mm/yr was lower than WSF,which is 16.5±2 mm/yr.It is consistent with the rigid block nature of the SFZ system as northern segment slip rates have similar value.Small slip rates are possibly leading to lower generated seismic moment than the major segment of SFZ.展开更多
Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately un...Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately uniform strike slip rate strongly supports the clockwise rotation model of the southeastern Tibetan crust. By approximating the geometry of the arc-shaped Xianshuihe-Xiaojiang fault system as a portion of a small circle on a spherical Earth, the 15±2 mm/a strike slip rate corresponds to clockwise rotation of the Southeastern Tibetan Block at the (5.2±0.7)×10^-7 deg/a angular velocity around the pole (21°N, 88°E) relative to the Northeast Tibetan Block. The approximately uniform strike slip rate along the Xianshuihe-Xiaojiang fault system also implies that the Longmeushan thrust zone is not active, or at least its activity has been very weak since the Late Quaternary. Moreover, the total offset along the Xiaushuihe-Xiaojiang fault system suggests that the lateral extrusion of the Southeastern Tibetan Block relative to Northeastern Tibetan Block is about 160 km and 200-240 km relative to the Tarim-North China block. This amount of lateral extrusion of the Tibetan crust should have accommodated about 13-24% convergence between India and Eurasia based on mass balance calculations. Assuming that the slip rate of 15±2 mm/a is constant throughout the entire history of the Xianshuihe-Xiaojiang fault system, 11±1.5 Ma is needed for the Xianshuihe-Xiaojiang fault system to attain the 160 km of total offset. This implies that left-slip faulting on the Xianshuihe-Xiaojiang fault system might start at 11±1.5 Ma.展开更多
The Late Quaternary slip rate along the Maqu segment of the eastern Kunlun Fault was estimated using a combination of high-resolution remote sensing imagery interpretation, field observations and differential Global P...The Late Quaternary slip rate along the Maqu segment of the eastern Kunlun Fault was estimated using a combination of high-resolution remote sensing imagery interpretation, field observations and differential Global Positioning System(GPS) measurements of offset river terraces, and 14 C dating of snail shells collected from offset risers. The results show that the left-slip rate along the segment is 3–5 mm/a, and that the vertical slip rate is 0.3–0.5 mm/a. Both the horizontal and vertical slips on the segment remain consistent over a distance of ~100 km. It means that no slip gradient as previously suggested occurred along the Maqu segment, and which thus might behave as an independent seismogenic fault. Judging from multiple relationships among young terrace offsets, we infer that co-seismic surface rupture produced by a characteristic earthquake with a magnitude of Ms7.0–7.5 on the Maqu fault could generate a horizontal slip of 4.5–5 m and a vertical slip of 0.45–0.5 m, with a corresponding ratio(Dh/Dv) of about 9. Two surface rupture events must have occurred over the past 3300 years, the latest one possibly between 1485 cal BP and 1730 cal BP.展开更多
The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear.This paper investigates the transitional behaviors of slip events happened on a planar granite fr...The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear.This paper investigates the transitional behaviors of slip events happened on a planar granite fracture under cyclic normal stress with diferent oscillation amplitudes.The experimental results show that the activations of fast slips always correlate with unloading of normal stress.Besides,the intensive normal stress oscillation can weaken the shear strength which is recoverable when the normal stress return to constant.The rupture patterns are quantifed by stress drop,slip length and slip velocity.With the efect of small oscillation amplitudes,the slip events show chaotic shapes,compared to the regular and predictable style under constant normal stress.When the amplitude is large enough,the big and small slip events emerge alternately,showing a compound slip style.Large amplitude of the cyclic normal stress also widens the interval diferences of the slip events.This work provides experimental supports for a convincible link between the dynamic stress disturbance and the slip behavior of rock fractures.展开更多
Two sets of active faults,northwest-and northeast-trending faults,are developed in the Chao-shan Plain of East Guangdong.After detailed interpretation of aerophotos,we have found outthat there is the clear phenomenon ...Two sets of active faults,northwest-and northeast-trending faults,are developed in the Chao-shan Plain of East Guangdong.After detailed interpretation of aerophotos,we have found outthat there is the clear phenomenon of sinistral dislocation of drainage system on the Huang-gang-shui fault and part of Fengshun-Shantou fault.Field investigation confirmed that the geo-morphic bodies along the two faults have undergone displacement.Large-scale topographicmapping was made at three displaced sites and samples for age dating were collected from thegeomorphic booies.Calculation indicates that the average rate of sinistral strike-slip movementin the Holocene time amounts to 1.11±0.09~2.69±0.24mm/a along the Huanggangshuifault and 3.26±0.26mm/a along the Fengshun-Shantou fault.These two more active NW-trending faults extend into sea area,where they intersect the NE-trending strongly active Nius-han Island-Xiongdi Isle-Nanpeng Isles fault at a depth of 40~50m in water.The intersection isa location favorable展开更多
The I ingwu fault is in the eastern boundary of the southern section of Yinchuan graben. It hasa close relation to seismicity in the Lingwu-Wuzhong region.Few researches have been done.In this Paper,on the basis of te...The I ingwu fault is in the eastern boundary of the southern section of Yinchuan graben. It hasa close relation to seismicity in the Lingwu-Wuzhong region.Few researches have been done.In this Paper,on the basis of tee data obtained from field investigation,the activity features inLate Quaternary have been discussed.The vertical displacement and its slip rate have been alsoestimated.The fault is 48km in length,being divided into 3 segments according to geologicaland topographical characteristics.The last rupture along its northern and middle segments wasoccurred in late of Late Pleistocene or early Holocene while that along the southern segmentwas occurred in midle Holocene.The vertical slip rate is estimated as 0.23~025mm/a sinceabout 66ka B.P.based on the vertical displacements of terracesⅠ,Ⅱ and Ⅲ and their ages.展开更多
The results from interpretation of the aerophotos and in-situ seismogeological researches show that there are some obvious late-Quaternary activities along the Moxi-Mianning segment of the Xianshuihe-Anninghe fault zo...The results from interpretation of the aerophotos and in-situ seismogeological researches show that there are some obvious late-Quaternary activities along the Moxi-Mianning segment of the Xianshuihe-Anninghe fault zone, with the characteristics of sinistral-slip movement accompanied by some significant vertical slip components. Since late-Quaternary, the average horizontal slip rate of the segment at the south of Moxi along the Xianshuihe fault is 6.0~9.9mm/a and 4.7~5.3mm/a along the segment at the north of Mianning of the Anninghe fault. The results from the investigation of coseismic dislocation and ground rupture show that the ground rupture caused by 1876 Kangding-Luding earthquake with M 7 3/ 4 can extend to the south of Tianwan. The segment at the north of Mianning of the Anninghe fault has a background for producing M7.5 earthquake and the geological record of the last strong earthquake must be the proofs of the 1327 earthquake with M>6.0 with poor historical records.展开更多
The deformation pattern and Holocene slip rate along the Fukang fault in Eastern Tianshan, China are analyzed and studied using the data obtained in field investigation. The result indicates that the Fukang fault cons...The deformation pattern and Holocene slip rate along the Fukang fault in Eastern Tianshan, China are analyzed and studied using the data obtained in field investigation. The result indicates that the Fukang fault consists of 4 low-angle south-dipping thrust faults with stepover, displaying recent tectonic activity. The movement along the termination parts of the fault is weaker, with an average vertical slip rate of 0 13~0 33 mm/a in Holocene, and along the middle part of the fault is stronger, with an average vertical slip rate larger than 1.42 mm/a in Holocene. The Holocene deformation pattern along the fault displays generally steady slip, multi-phase intermittent movement along its western segment, and persistent movement along its middle and eastern segments, which have caused rapid dislocation up to the surface in an earlier phase.展开更多
The Longling-Ruili fault is an important active fault in Southwestern China, striking generally northeast. The fault controls the development of the sedimentary series and magmatic action on its two sides, as well as ...The Longling-Ruili fault is an important active fault in Southwestern China, striking generally northeast. The fault controls the development of the sedimentary series and magmatic action on its two sides, as well as the development of the Longling basin, Mangshi basin and the Zhefang basin along it. Due to limited Quaternary sediments and harsh natural conditions, the study of late Quaternary fault activity on the northern segment of the Longling-Ruili fault is lacking and the time of the newest faulting and the Quaternary slip rate are not clear at present. Based on the interpretation of remote images, quantitative geomorphologic deformation measurements and dating of young terrace deposits and alluvial fans, this paper obtains some new results as follows. The northern segment of the Longling-Ruili fault is a Holocene dextral strike-slip fault with some component of a normal slip. The terrace T1 composing mainly of alluvial deposits formed during 4ka B. P. was offset by the northern segment of the Longling-Ruili fault and its left-lateral and its vertical displacements are 8m - 12m and 2m, respectively. The late Pleistocene alluvial fan was displaced with a left-lateral and vertical displacement of 70m and lgm, respectively. The strike-slip rate of the Longling-Ruili fault is 2.2mm/a 2.5mm/a and the vertical slip rate is 0.6mm/a since the late Pleistocene epoch. The strike-slip rate of the Longling-Ruili fault is 1.8mm/a - 3.0mm/a and vertical slip rate is 0.5mm/a during the Holocene epoch. The proportion of horizontal to vertical displacement is about 4: 1, which means that the vertical slip rate on the northern segment of the Longling-Ruili fault is about 25 % of the horizontal slip rate. The left-lateral slip rate in the late Holocene is consistent with the GPS measurement. The strike slip rate is of great consistency in different time scales since the late Pleistocene epoch, indicating that the activity of the Longling-Ruili fault is of great stability.展开更多
In this paper, using the 1999 ~ 2007 GPS velocity field data, and by choosing the optimal block model, we obtained the deformation models applicable to the boundary zones of major blocks and the slip rates of block bo...In this paper, using the 1999 ~ 2007 GPS velocity field data, and by choosing the optimal block model, we obtained the deformation models applicable to the boundary zones of major blocks and the slip rates of block boundary faults on the mid-southern segment of the North-South Seismic Belt. The results show that: on the Longmenshan fault zone, the tensional and compressive slip rate is small on the Baoxing-Wenchuan segment, about 0. 5 ~ 1.8mm·a^-1, and the rate is relatively significant on the segment of the Wenchuan--Maoxian, as 1.8 ~3.8mm·a^-1; on the Xianshuihe fault belt, there is a certain difference in spatial distribution between the tensional slip rag.e and strike-slip rate: the tensional slip rate ( 8. lmm^a-1) is bigger than the sinistral strike-slip rate ( 4.8mm·a^-1) at the north of the Luhuo region; the tension and compression slip rate is basically the same as the strike-slip rate at Luhuo-Dawu; the Dawu-Kangding section presents a trend of decreased strike-slip rate and increased tensional slip rate; the Kangding-ghimian segment shows a strike-slip nature; the strike-slip rate is significantly greater than the tension/compression rate on the Xiaojiang fault zone; the slip rate on the Red River fault zone shows obvious spatial segmentation, the slip rate is smaller in its northwest part, but with a certain amount of tensional/compression component, 4. 7mm·a^-1 on the Jingdong segment. The segment east of Jingdong ( western Gejiu) is mainly of strike-slip, with a slip rate of 4. 5mm·a^-1.展开更多
Because of the significance to the formation and evolution of the Tibetan plateau, the displacement and slip rate of the Altyn Tagh fault have been topics full of disputation. Scientists who hold different opinions on...Because of the significance to the formation and evolution of the Tibetan plateau, the displacement and slip rate of the Altyn Tagh fault have been topics full of disputation. Scientists who hold different opinions on the evolution of Tibet insist on different slip rates and displacements of the fault zone. In the article, study is focused on the late Quaternary slip rate of the Altyn Tagh fault west of the Cherchen River (between 85°E and 85°45’E). On the basis of high resolution SPOT images of the region, three sites, namely Koramlik, Aqqan pasture and Dalakuansay, were chosen for field investigation. To calculate the slip rate of the fault, displacement of terraces was measured on SPOT satellite images or in situ during fieldwork and thermo-luminescence (TL) dating method was used. To get the ages of terraces, samples of sand were collected from the uppermost sand beds that lie just under loess. The method for calculating slip rate of fault is to divide the displacement of terrace risers by the age of its neighboring lower terrace. The displacement of rivers is not considered in this article because of its uncertainties. At Koramlik, the slip rate of the Altyn Tagh fault is 11.6±2.6mm/a since 6.02±0.47ka B.P and 9.6±2.6mm/a since 15.76±1.19ka B.P. At Aqqan pasture, about 30km west of Koramlik, the slip rate is 12.1±1.9mm/a since 2.06±0.16 ka B.P. At Dalakuansayi, the slip rate of the fault is 12.2±3.0mm/a since 4.91±0.39ka B.P. Hence, we get the average slip rate of 11.4±2.5mm/a for the western part of the Altyn Tagh Fault since Holocene. This result is close to the latest results from GPS research.展开更多
Based on the collection of active fault slip rate data of large intra-continental shallow thrust earthquakes occurring in the triangular seismic region of the East Asia continent,a preliminary analysis has been perfor...Based on the collection of active fault slip rate data of large intra-continental shallow thrust earthquakes occurring in the triangular seismic region of the East Asia continent,a preliminary analysis has been performed with results showing that the Wenchuan,Sichuan, China earthquake ( MS = 8.0) of May 12,2008 occurred on the Longmenshan Mountain active fault with an abnormally low slip rate.展开更多
基金supported by the Special Project of Basic Work of Science and Technology(grant No.2011FY110100-2)the Project of China Geological Survey(grant No.1212010914025 and No.12120113038000)the Project of 12~(th) Five-Year National Sci-Tech Support Plan(grant No.2011BAK12B09)
文摘The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas.
基金the Special Fund for China Earthquake Research (Grant No.201408023)National Natural Science Foundation of China (Grant No.40872132,41030317)Chinese Academy of Sciences Key Project (XDB03020201)
文摘The slip rate of Yema River-Daxue Mountain fault in the western segment of Qilian Mountains was determined by the dated offset of river risers or gullies. Results indicate that the left-lateral fault slip rate is 2.82± 0.20 mm/a at Dazangdele site, 2.00 ± 0.24 mm/a at Shibandun site, and 0.50± 0.36 and 2.80±0.33 mm/a at two sites in Zhazihu. The ideal average slip rate of the whole fault is 2.81 ± 0.32 mm/a. The lower slip rate confirms part of the displacement of Altyn Tagh fault was transformed into an uplifting of the strap mountains in the western segment of Qilian Mountains, whereas another part transformed into sinistral displacement of Haiyuan fault. This study illustrates that the slip of large strike-slip faults in the northeastern margin of the plateau transforms into crust thickening at the tip of the fault without large-scale propagation to the outer parts of the plateau.
文摘Located on the western of Sichuan, the east border of Tibet plateau, Xianshuihe fault is a significant strong earthquake zone. From Huiyuansi pull\|apart basin in Qianning, Xianshuihe fault can be divided two segments\|NW section and SE section: the construction of the former is single and a main fault; the construction of the latter is complex and composed by three parallel faults, its main fault is named as Selaha—Kangding fault, which distributes along Jinlongsi, Sehala, Mugecuo and Kangding. Yalahe fault, located at the NE direction of the main fault, and Zeduotang fault, located at the SW direction of the main fault, are all secondary faults, which are 9~13km away from the main fault. At the south of Kangding, the segment of Xianshuihe fault is a single main section, called as Moxi fault. On the basis of recent researching results, this paper mainly discusses the slip rate and recurrence interval of strong earthquake of the SE segment (Qianning—Kangding) on Xianshuihe.
基金supported by China Earthquake Administration under grants 200708008 and IES02092405
文摘Repeating microearthquakes were identified along the edge of the rupture area of the 2008 MW7.9 Wenchuan earthquake. Slip rates at depths derived from seismic moments and recurrence intervals are found to be systematically larger than those observed at surface. This large deep slip rate may explain the odds about the occurrence of this unanticipated event. Our observations here suggested that seismic hazard could be underestimated if surface measurements alone are employed.
基金funded by foundation of seismic risk assessment of active faults,China Earthquake Administration(Grant no.1521044025)
文摘The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Quaternary activity, paleoseismology, and deformation characteristics of the fault provide important clues for understanding the tectonic process of the eastern Tian Shan orogen and implementing seismic mitigation. Through interpretation of high-resolution satellite images, unmanned aerial vehicle measurements, and detailed geological and geomorphic investigations, we suggest that the fault exhibits clear left-lateral slip along its western segment. Paleoseismic trenches dug near Xiongkuer reveal evidence of six large paleoearthquakes. The four latest paleoearthquakes were dated: the oldest event occurred at 4663 BC–3839 BC. Data on the horizontal offsets along the probable 1842 Barkol earthquake coseismic rupture suggest clear multiple relationships between cumulative offsets and possible ~4 m of coseismic left-lateral slip per event. From the cumulative offsets and 14 C sample ages, we suggest an average Holocene left-lateral slip rate of 2.4–2.8 mm/a on the SBF, accounting for ~80% of lateral deformation within the entire eastern Tian Shan fault system. This result is comparable with the shortening rate of 2–4 mm/a in the whole eastern Tian Shan, indicating an equal role of strike-slip tectonics and compressional tectonics in this orogen, and that the SBF may accommodate substantial lateral tectonic deformation.
基金sponsored by the National Nonprofit Fundamental Research Grant of China(IGCEA1803,IGCEA1901)the National Key R&D Program of China(2017YFC1500401).
文摘Slip rate along the major active fault is an important parameter in the quantitative study of active tectonics.It is the average rate of fault slip during a certain period of time,reflecting the rate of strain energy accumulation on the fault zone.It cannot only be directly applied to evaluate the activity of the fault,the probabilistic seismic hazard analysis,but also important basic data for the study of geodynamics.However,due to the nonstandardized process of obtaining fault slip rates for a given strike-slip fault,the results could be diverse based on various methods by different researchers.In this review,we analyzed the main advances in the approaches to obtain fault slip rate.We found that there are four main sources affecting the final results of slip rate:the displacement along the fault,the dating of the corresponding displacement,the fitting of the displacement and corresponding dating results,and paleoslip analysis.The main advances in obtaining fault slip rates are based on improving the reli-ability of the above four main factors.To obtain a more reasonable and reliable slip rate for a given fault,it is necessary to select a suitable method according to the specific situation.
基金Chinese Joint Seismological Science Foundation (95-07-0425).
文摘The geometry of the Qianning-Kangding segment of the Xianshuihe fault zone is quite complex, and it is composed of four secondary-faults, i.e., the Yalahe fault, Selaha-Kangding fault, Zeduotang fault and Moxi fault. On this segment, three strong earthquakes with M(7.0 occurred in 1725, 1786 and 1955, respectively. Based on a study of fault landform and geochronology (14C and Thermoluminesense), this paper documents the average horizontal slip rates during the late-Quaternary on all the secondary-faults of the Qianning-Kangding segment as follows: Yalahe fault: (2.0(0.2) mm/a; Selaha-Kangding fault: (5.5(0.6) mm/a; Zeduotang fault: (3.6(0.3) mm/a; Moxi fault: (9.9(0.6) mm/a. The results from the investigation of surface ruptures of historical earthquakes, coseismic-slip and paleo-earthquakes show that the strong-earthquake recurrence intervals are thousands of years on the Yalahe fault, and 230 to 350 years on the Selaha-Kangding and Zeduotang faults. In the next one hundred years, the recurrence of a strong-earthquake on these faults appears impossible. However, the strong-earthquake recurrence interval on the Moxi fault is about 300 years. Up to now, it has been 214 years since the last earthquake (magnitude 7) occurred in 1786, therefore, this fault is now approaching the condition favorable for the next strong earthquake recurrence.
基金funded by Institut Teknologi Sumatera Smart Mandiri 2019 Research Grant Fund No.B/364/IT9.C1/PT.01.03/2019
文摘65 km Semangko Fault is part of southern segments of Sumatran Fault Zone(SFZ)which is complex corresponds to the transition from the strike-slip regime of the SFZ to the normal faulting tectonics of the Sunda Strait.The recent publication showed branches of Semangko Fault:West Semangko Fault(WSF)and East Semangko Fault(ESF).This study estimated geodetic slip rate and locking depth of ESF using Global Positioning System(GPS)time series data from 2007 to 2019 from all available GPS sites.GPS velocities refer to Sundaland Plate were used to estimate the fault parameters of the WSF and ESF simultaneously.Non-uniformity of velocity direction shows the complexities of Semangko Fault possibly caused by the contribution of all faults around ESF.An ESF geodetic slip rate,which is 12.5±2 mm/yr was lower than WSF,which is 16.5±2 mm/yr.It is consistent with the rigid block nature of the SFZ system as northern segment slip rates have similar value.Small slip rates are possibly leading to lower generated seismic moment than the major segment of SFZ.
基金supported mainly by the National Key Basic Research Program(No.2004CB418401)the National Natural Science Foundation of China(grant No.40472109)+1 种基金partly from the Joint Earthquake Science Foundation of China(grant No.105066)the SASAKAWA Scientific Grant from the Japan Science Society.
文摘Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately uniform strike slip rate strongly supports the clockwise rotation model of the southeastern Tibetan crust. By approximating the geometry of the arc-shaped Xianshuihe-Xiaojiang fault system as a portion of a small circle on a spherical Earth, the 15±2 mm/a strike slip rate corresponds to clockwise rotation of the Southeastern Tibetan Block at the (5.2±0.7)×10^-7 deg/a angular velocity around the pole (21°N, 88°E) relative to the Northeast Tibetan Block. The approximately uniform strike slip rate along the Xianshuihe-Xiaojiang fault system also implies that the Longmeushan thrust zone is not active, or at least its activity has been very weak since the Late Quaternary. Moreover, the total offset along the Xiaushuihe-Xiaojiang fault system suggests that the lateral extrusion of the Southeastern Tibetan Block relative to Northeastern Tibetan Block is about 160 km and 200-240 km relative to the Tarim-North China block. This amount of lateral extrusion of the Tibetan crust should have accommodated about 13-24% convergence between India and Eurasia based on mass balance calculations. Assuming that the slip rate of 15±2 mm/a is constant throughout the entire history of the Xianshuihe-Xiaojiang fault system, 11±1.5 Ma is needed for the Xianshuihe-Xiaojiang fault system to attain the 160 km of total offset. This implies that left-slip faulting on the Xianshuihe-Xiaojiang fault system might start at 11±1.5 Ma.
基金support of the Natural Science Foundation of China(41472178)the China Geological Survey projects(1212011120167,12120114002211)
文摘The Late Quaternary slip rate along the Maqu segment of the eastern Kunlun Fault was estimated using a combination of high-resolution remote sensing imagery interpretation, field observations and differential Global Positioning System(GPS) measurements of offset river terraces, and 14 C dating of snail shells collected from offset risers. The results show that the left-slip rate along the segment is 3–5 mm/a, and that the vertical slip rate is 0.3–0.5 mm/a. Both the horizontal and vertical slips on the segment remain consistent over a distance of ~100 km. It means that no slip gradient as previously suggested occurred along the Maqu segment, and which thus might behave as an independent seismogenic fault. Judging from multiple relationships among young terrace offsets, we infer that co-seismic surface rupture produced by a characteristic earthquake with a magnitude of Ms7.0–7.5 on the Maqu fault could generate a horizontal slip of 4.5–5 m and a vertical slip of 0.45–0.5 m, with a corresponding ratio(Dh/Dv) of about 9. Two surface rupture events must have occurred over the past 3300 years, the latest one possibly between 1485 cal BP and 1730 cal BP.
基金supported by Fundamental Research Funds for the Central Universities(22dfx06)Natural Science Foundation of Guangdong Province-Joint Program for Ofshore Wind Power(2022A1515240009).
文摘The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear.This paper investigates the transitional behaviors of slip events happened on a planar granite fracture under cyclic normal stress with diferent oscillation amplitudes.The experimental results show that the activations of fast slips always correlate with unloading of normal stress.Besides,the intensive normal stress oscillation can weaken the shear strength which is recoverable when the normal stress return to constant.The rupture patterns are quantifed by stress drop,slip length and slip velocity.With the efect of small oscillation amplitudes,the slip events show chaotic shapes,compared to the regular and predictable style under constant normal stress.When the amplitude is large enough,the big and small slip events emerge alternately,showing a compound slip style.Large amplitude of the cyclic normal stress also widens the interval diferences of the slip events.This work provides experimental supports for a convincible link between the dynamic stress disturbance and the slip behavior of rock fractures.
基金This paper presents one of the research results of a key project in Ninth Five-Year Program was supported by China Seismological Bureau grant (95-04-10-04). Institute of Geology, CSB, contribution No.2000B0034.
文摘Two sets of active faults,northwest-and northeast-trending faults,are developed in the Chao-shan Plain of East Guangdong.After detailed interpretation of aerophotos,we have found outthat there is the clear phenomenon of sinistral dislocation of drainage system on the Huang-gang-shui fault and part of Fengshun-Shantou fault.Field investigation confirmed that the geo-morphic bodies along the two faults have undergone displacement.Large-scale topographicmapping was made at three displaced sites and samples for age dating were collected from thegeomorphic booies.Calculation indicates that the average rate of sinistral strike-slip movementin the Holocene time amounts to 1.11±0.09~2.69±0.24mm/a along the Huanggangshuifault and 3.26±0.26mm/a along the Fengshun-Shantou fault.These two more active NW-trending faults extend into sea area,where they intersect the NE-trending strongly active Nius-han Island-Xiongdi Isle-Nanpeng Isles fault at a depth of 40~50m in water.The intersection isa location favorable
基金This project was sponsored by the Joint Earthquake Seience Foundation (197013) and the Commission of Science and Technology, Ningxia Hui Autonomous Region, China.
文摘The I ingwu fault is in the eastern boundary of the southern section of Yinchuan graben. It hasa close relation to seismicity in the Lingwu-Wuzhong region.Few researches have been done.In this Paper,on the basis of tee data obtained from field investigation,the activity features inLate Quaternary have been discussed.The vertical displacement and its slip rate have been alsoestimated.The fault is 48km in length,being divided into 3 segments according to geologicaland topographical characteristics.The last rupture along its northern and middle segments wasoccurred in late of Late Pleistocene or early Holocene while that along the southern segmentwas occurred in midle Holocene.The vertical slip rate is estimated as 0.23~025mm/a sinceabout 66ka B.P.based on the vertical displacements of terracesⅠ,Ⅱ and Ⅲ and their ages.
文摘The results from interpretation of the aerophotos and in-situ seismogeological researches show that there are some obvious late-Quaternary activities along the Moxi-Mianning segment of the Xianshuihe-Anninghe fault zone, with the characteristics of sinistral-slip movement accompanied by some significant vertical slip components. Since late-Quaternary, the average horizontal slip rate of the segment at the south of Moxi along the Xianshuihe fault is 6.0~9.9mm/a and 4.7~5.3mm/a along the segment at the north of Mianning of the Anninghe fault. The results from the investigation of coseismic dislocation and ground rupture show that the ground rupture caused by 1876 Kangding-Luding earthquake with M 7 3/ 4 can extend to the south of Tianwan. The segment at the north of Mianning of the Anninghe fault has a background for producing M7.5 earthquake and the geological record of the last strong earthquake must be the proofs of the 1327 earthquake with M>6.0 with poor historical records.
文摘The deformation pattern and Holocene slip rate along the Fukang fault in Eastern Tianshan, China are analyzed and studied using the data obtained in field investigation. The result indicates that the Fukang fault consists of 4 low-angle south-dipping thrust faults with stepover, displaying recent tectonic activity. The movement along the termination parts of the fault is weaker, with an average vertical slip rate of 0 13~0 33 mm/a in Holocene, and along the middle part of the fault is stronger, with an average vertical slip rate larger than 1.42 mm/a in Holocene. The Holocene deformation pattern along the fault displays generally steady slip, multi-phase intermittent movement along its western segment, and persistent movement along its middle and eastern segments, which have caused rapid dislocation up to the surface in an earlier phase.
基金sponsored by the Science and Technology Development Program of the Ministry of Railways(2008G027B),the People's Republic of Chinathe National Key Technology R&D Program(2006BAC13B)103),China
文摘The Longling-Ruili fault is an important active fault in Southwestern China, striking generally northeast. The fault controls the development of the sedimentary series and magmatic action on its two sides, as well as the development of the Longling basin, Mangshi basin and the Zhefang basin along it. Due to limited Quaternary sediments and harsh natural conditions, the study of late Quaternary fault activity on the northern segment of the Longling-Ruili fault is lacking and the time of the newest faulting and the Quaternary slip rate are not clear at present. Based on the interpretation of remote images, quantitative geomorphologic deformation measurements and dating of young terrace deposits and alluvial fans, this paper obtains some new results as follows. The northern segment of the Longling-Ruili fault is a Holocene dextral strike-slip fault with some component of a normal slip. The terrace T1 composing mainly of alluvial deposits formed during 4ka B. P. was offset by the northern segment of the Longling-Ruili fault and its left-lateral and its vertical displacements are 8m - 12m and 2m, respectively. The late Pleistocene alluvial fan was displaced with a left-lateral and vertical displacement of 70m and lgm, respectively. The strike-slip rate of the Longling-Ruili fault is 2.2mm/a 2.5mm/a and the vertical slip rate is 0.6mm/a since the late Pleistocene epoch. The strike-slip rate of the Longling-Ruili fault is 1.8mm/a - 3.0mm/a and vertical slip rate is 0.5mm/a during the Holocene epoch. The proportion of horizontal to vertical displacement is about 4: 1, which means that the vertical slip rate on the northern segment of the Longling-Ruili fault is about 25 % of the horizontal slip rate. The left-lateral slip rate in the late Holocene is consistent with the GPS measurement. The strike slip rate is of great consistency in different time scales since the late Pleistocene epoch, indicating that the activity of the Longling-Ruili fault is of great stability.
基金jointly sponsored by the National Key Technology R&D Program of the 12th "Five-year Plan" of PRC(2012BAK19B02)the Special Fund for Earthquake-related Scientific Research of China Earthquake Administration(201108009)the Youth Earthquake Regime Tracing Project for 2012(2012020212)
文摘In this paper, using the 1999 ~ 2007 GPS velocity field data, and by choosing the optimal block model, we obtained the deformation models applicable to the boundary zones of major blocks and the slip rates of block boundary faults on the mid-southern segment of the North-South Seismic Belt. The results show that: on the Longmenshan fault zone, the tensional and compressive slip rate is small on the Baoxing-Wenchuan segment, about 0. 5 ~ 1.8mm·a^-1, and the rate is relatively significant on the segment of the Wenchuan--Maoxian, as 1.8 ~3.8mm·a^-1; on the Xianshuihe fault belt, there is a certain difference in spatial distribution between the tensional slip rag.e and strike-slip rate: the tensional slip rate ( 8. lmm^a-1) is bigger than the sinistral strike-slip rate ( 4.8mm·a^-1) at the north of the Luhuo region; the tension and compression slip rate is basically the same as the strike-slip rate at Luhuo-Dawu; the Dawu-Kangding section presents a trend of decreased strike-slip rate and increased tensional slip rate; the Kangding-ghimian segment shows a strike-slip nature; the strike-slip rate is significantly greater than the tension/compression rate on the Xiaojiang fault zone; the slip rate on the Red River fault zone shows obvious spatial segmentation, the slip rate is smaller in its northwest part, but with a certain amount of tensional/compression component, 4. 7mm·a^-1 on the Jingdong segment. The segment east of Jingdong ( western Gejiu) is mainly of strike-slip, with a slip rate of 4. 5mm·a^-1.
文摘Because of the significance to the formation and evolution of the Tibetan plateau, the displacement and slip rate of the Altyn Tagh fault have been topics full of disputation. Scientists who hold different opinions on the evolution of Tibet insist on different slip rates and displacements of the fault zone. In the article, study is focused on the late Quaternary slip rate of the Altyn Tagh fault west of the Cherchen River (between 85°E and 85°45’E). On the basis of high resolution SPOT images of the region, three sites, namely Koramlik, Aqqan pasture and Dalakuansay, were chosen for field investigation. To calculate the slip rate of the fault, displacement of terraces was measured on SPOT satellite images or in situ during fieldwork and thermo-luminescence (TL) dating method was used. To get the ages of terraces, samples of sand were collected from the uppermost sand beds that lie just under loess. The method for calculating slip rate of fault is to divide the displacement of terrace risers by the age of its neighboring lower terrace. The displacement of rivers is not considered in this article because of its uncertainties. At Koramlik, the slip rate of the Altyn Tagh fault is 11.6±2.6mm/a since 6.02±0.47ka B.P and 9.6±2.6mm/a since 15.76±1.19ka B.P. At Aqqan pasture, about 30km west of Koramlik, the slip rate is 12.1±1.9mm/a since 2.06±0.16 ka B.P. At Dalakuansayi, the slip rate of the fault is 12.2±3.0mm/a since 4.91±0.39ka B.P. Hence, we get the average slip rate of 11.4±2.5mm/a for the western part of the Altyn Tagh Fault since Holocene. This result is close to the latest results from GPS research.
基金Funded as a sub-project entitled"Tectonic Patterns of Strong Earthquakes in the Central Asia Continent and Its Dynamic Setting(2008CB425703)"within the project"A Study on the Occurrence Mechanism of the Wenchuan Earthquake and Its Large-scale Regional Dynamic Setting" under the National Key Basic R & D Program (973 Program),China
文摘Based on the collection of active fault slip rate data of large intra-continental shallow thrust earthquakes occurring in the triangular seismic region of the East Asia continent,a preliminary analysis has been performed with results showing that the Wenchuan,Sichuan, China earthquake ( MS = 8.0) of May 12,2008 occurred on the Longmenshan Mountain active fault with an abnormally low slip rate.