We analyze left-truncated and right-censored data using Cox proportional hazard models with long-term survivors. The estimators of covariate coefficients and the long-term survivor proportion are obtained by the parti...We analyze left-truncated and right-censored data using Cox proportional hazard models with long-term survivors. The estimators of covariate coefficients and the long-term survivor proportion are obtained by the partial likelihood method, and their asymptotic properties are also established. Simulation studies demonstrate the performance of the proposed estimators, and an application to a real dataset is provided.展开更多
Generalized exponential distribution is a class of important distribution in lifedata analysis,especially in some skewed lifedata.The Parameter estimation problem for generalized exponential distribution model with gr...Generalized exponential distribution is a class of important distribution in lifedata analysis,especially in some skewed lifedata.The Parameter estimation problem for generalized exponential distribution model with grouped and right-censored data is considered.The maximum likelihood estimators are obtained using the EM algorithm.Some simulations are carried out to illustrate that the proposed algorithm is effective for the model.Finally,a set of medicine data is analyzed by generalized exponential distribution.展开更多
We propose a new nonparametric method for assessing non-inferiority of an experimental therapy compared to a standard of care. The ratio μE/μR of true median survival times is the parameter of interest. This is of c...We propose a new nonparametric method for assessing non-inferiority of an experimental therapy compared to a standard of care. The ratio μE/μR of true median survival times is the parameter of interest. This is of considerable interest in clinical trials of generic drugs. We think of the ratio mE/mR of the sample medians as a point estimate of the ratioμE/μR. We use the Fieller-Hinkley distribution of the ratio of two normally distributed random variables to derive an unbiased level-α test of inferiority null hypothesis, which is stated in terms of the ratio μE/μR and a pre-specified fixed non-inferiority margin δ. We also explain how to assess equivalence and non-inferiority using bootstrap equivalent confidence intervals on the ratioμE/μR. The proposed new test does not require the censoring distributions for the two arms to be equal and it does not require the hazard rates to be proportional. If the proportional hazards assumption holds good, the proposed new test is more attractive. We also discuss sample size determination. We claim that our test procedure is simple and attains adequate power for moderate sample sizes. We extend the proposed test procedure to stratified analysis. We propose a “two one-sided tests” approach for assessing equivalence.展开更多
This paper considers the monotonic transformation model with an unspecified transformation function and an unknown error function, and gives its monotone rank estimation with length-biased and rightcensored data. The ...This paper considers the monotonic transformation model with an unspecified transformation function and an unknown error function, and gives its monotone rank estimation with length-biased and rightcensored data. The estimator is shown to be√n-consistent and asymptotically normal. Numerical simulation studies reveal good finite sample performance and the estimator is illustrated with the Oscar data set. The variance can be estimated by a resampling method via perturbing the U-statistics objective function repeatedly.展开更多
Under some mild conditions, we derive the asymptotic normality of the Nadaraya-Watson and local linear estimators of the conditional hazard function for left-truncated and dependent data. The estimators were proposed ...Under some mild conditions, we derive the asymptotic normality of the Nadaraya-Watson and local linear estimators of the conditional hazard function for left-truncated and dependent data. The estimators were proposed by Liang and Ould-Sa?d [1]. The results confirm the guess in Liang and Ould-Sa?d [1].展开更多
This paper studies the asymptotic normality of the Nelson-Aalen and the Kaplan-Meier estimators in a competing risks context in presence of independent right-censorship. To prove our results, we use Robelledo’s theor...This paper studies the asymptotic normality of the Nelson-Aalen and the Kaplan-Meier estimators in a competing risks context in presence of independent right-censorship. To prove our results, we use Robelledo’s theorem which makes it possible to apply the central limit theorem to certain types of particular martingales. From the results obtained, confidence bounds for the hazard and the survival functions are provided.展开更多
Exclusive hypothesis testing is a new and special class of hypothesis testing.This kind of testing can be applied in survival analysis to understand the association between genomics information and clinical informatio...Exclusive hypothesis testing is a new and special class of hypothesis testing.This kind of testing can be applied in survival analysis to understand the association between genomics information and clinical information about the survival time.Besides,it is well known that Cox's proportional hazards model is the most commonly used model for regression analysis of failure time.In this paper,the authors consider doing the exclusive hypothesis testing for Cox's proportional hazards model with right-censored data.The authors propose the comprehensive test statistics to make decision,and show that the corresponding decision rule can control the asymptotic TypeⅠerrors and have good powers in theory.The numerical studies indicate that the proposed approach works well for practical situations and it is applied to a set of real data arising from Rotterdam Breast Cancer Data study that motivated this study.展开更多
Based on the idea of local polynomial double-smoother, we propose an estimator of a conditional cumulative distribution function with dependent and left-truncated data. It is assumed that the observations form a stati...Based on the idea of local polynomial double-smoother, we propose an estimator of a conditional cumulative distribution function with dependent and left-truncated data. It is assumed that the observations form a stationary a-mixing sequence. Asymptotic normality of the estimator is established. The finite sample behavior of the estimator is investigated via simulations.展开更多
基金Natural Science Funds for Distinguished Young Scholar (No. 70825004)Creative Research Groups of China (No. 10721101)+2 种基金Shanghai University of Finance and Economics Project 211 Phase ⅢShanghai Leading Academic Discipline Project (No. B803)Zhou's work was supported by Graduate Creation Funds of Shanghai University of Finance and Economics(No. CXJJ-2011-436)
文摘We analyze left-truncated and right-censored data using Cox proportional hazard models with long-term survivors. The estimators of covariate coefficients and the long-term survivor proportion are obtained by the partial likelihood method, and their asymptotic properties are also established. Simulation studies demonstrate the performance of the proposed estimators, and an application to a real dataset is provided.
文摘Generalized exponential distribution is a class of important distribution in lifedata analysis,especially in some skewed lifedata.The Parameter estimation problem for generalized exponential distribution model with grouped and right-censored data is considered.The maximum likelihood estimators are obtained using the EM algorithm.Some simulations are carried out to illustrate that the proposed algorithm is effective for the model.Finally,a set of medicine data is analyzed by generalized exponential distribution.
文摘We propose a new nonparametric method for assessing non-inferiority of an experimental therapy compared to a standard of care. The ratio μE/μR of true median survival times is the parameter of interest. This is of considerable interest in clinical trials of generic drugs. We think of the ratio mE/mR of the sample medians as a point estimate of the ratioμE/μR. We use the Fieller-Hinkley distribution of the ratio of two normally distributed random variables to derive an unbiased level-α test of inferiority null hypothesis, which is stated in terms of the ratio μE/μR and a pre-specified fixed non-inferiority margin δ. We also explain how to assess equivalence and non-inferiority using bootstrap equivalent confidence intervals on the ratioμE/μR. The proposed new test does not require the censoring distributions for the two arms to be equal and it does not require the hazard rates to be proportional. If the proportional hazards assumption holds good, the proposed new test is more attractive. We also discuss sample size determination. We claim that our test procedure is simple and attains adequate power for moderate sample sizes. We extend the proposed test procedure to stratified analysis. We propose a “two one-sided tests” approach for assessing equivalence.
基金supported by Graduate Innovation Foundation of Shanghai University of Finance and Economics(Grant No.CXJJ2013-451)Cultivation Foundation of Excellent Doctor Degree Dissertation of Shanghai University of Finance and Economics(Grant No.YBPY201504)+4 种基金Program of Educational Department of Fujian Province(Grant Nos.JA14079 and JA12060)Natural Science Foundation of Fujian Province(Grant Nos.2014J01001 and 2012J01028)National Natural Science Foundation of China(Grant No.71271128)the State Key Program of National Natural Science Foundation of China(Grant No.71331006)National Center for Mathematics and Interdisciplinary Sciences,Key Laboratory of Random Complex Structures and Data Science,Chinese Academy of Sciences and Shanghai First-class Discipline A and Innovative Research Team of Shanghai University of Finance and Economics,Program for Changjiang Scholars Innovative Research Team of Ministry of Education(Grant No.IRT13077)
文摘This paper considers the monotonic transformation model with an unspecified transformation function and an unknown error function, and gives its monotone rank estimation with length-biased and rightcensored data. The estimator is shown to be√n-consistent and asymptotically normal. Numerical simulation studies reveal good finite sample performance and the estimator is illustrated with the Oscar data set. The variance can be estimated by a resampling method via perturbing the U-statistics objective function repeatedly.
基金supported by National Natural Science Foundation of China(No.11301084)Natural Science Foundation of Fujian Province(No.2014J01010)
文摘Under some mild conditions, we derive the asymptotic normality of the Nadaraya-Watson and local linear estimators of the conditional hazard function for left-truncated and dependent data. The estimators were proposed by Liang and Ould-Sa?d [1]. The results confirm the guess in Liang and Ould-Sa?d [1].
文摘This paper studies the asymptotic normality of the Nelson-Aalen and the Kaplan-Meier estimators in a competing risks context in presence of independent right-censorship. To prove our results, we use Robelledo’s theorem which makes it possible to apply the central limit theorem to certain types of particular martingales. From the results obtained, confidence bounds for the hazard and the survival functions are provided.
基金supported by the National Natural Science Foundation of China under Grant Nos.11971064,12371262,and 12171374。
文摘Exclusive hypothesis testing is a new and special class of hypothesis testing.This kind of testing can be applied in survival analysis to understand the association between genomics information and clinical information about the survival time.Besides,it is well known that Cox's proportional hazards model is the most commonly used model for regression analysis of failure time.In this paper,the authors consider doing the exclusive hypothesis testing for Cox's proportional hazards model with right-censored data.The authors propose the comprehensive test statistics to make decision,and show that the corresponding decision rule can control the asymptotic TypeⅠerrors and have good powers in theory.The numerical studies indicate that the proposed approach works well for practical situations and it is applied to a set of real data arising from Rotterdam Breast Cancer Data study that motivated this study.
基金supported by National Natural Science Foundation of China(No.11301084)Natural Science Foundation of Fujian Province(No.2014J01010)
文摘Based on the idea of local polynomial double-smoother, we propose an estimator of a conditional cumulative distribution function with dependent and left-truncated data. It is assumed that the observations form a stationary a-mixing sequence. Asymptotic normality of the estimator is established. The finite sample behavior of the estimator is investigated via simulations.