The research on legged robots attracted much attention both from the academia and industry. Legged robots are multi-input multi-output with multiple end-e ector systems. Therefore,the mechanical design and control fra...The research on legged robots attracted much attention both from the academia and industry. Legged robots are multi-input multi-output with multiple end-e ector systems. Therefore,the mechanical design and control framework are challenging issues. This paper reviews the development of type synthesis and behavior control on legged robots; introduces the hexapod robots developed in our research group based on the proposed type synthesis method. The control framework for legged robots includes data driven layer,robot behavior layer and robot execution layer. Each layer consists several components which are explained in details. Finally,various experiments were conducted on several hexapod robots. The summarization of the type synthesis and behavior control design constructed in this paper would provide a unified platform for communications and references for future advancement for legged robots.展开更多
<strong>Background:</strong> Arch support has the effect of maintaining arch and correcting alignment, and it is broadly used for the prevention of sports impediment and treatment of athletes with lowered ...<strong>Background:</strong> Arch support has the effect of maintaining arch and correcting alignment, and it is broadly used for the prevention of sports impediment and treatment of athletes with lowered MLA and foot problems. The fact that the morphological change of MLA damages balance sense and postural control, it was reported that the insole supporting the arch of MLA improved postural balance. There are several studies regarding the effects of arch support;however, its effects on landing control have not been clarified. Therefore, in our research, we discussed the effect of MLA support for landing control, using lower limb dynamic alignment and the moment during landing as indexes. <strong>Methods: </strong>This study measured the landing motion to be evaluated was to jump from a platform with a height of 30 cm by taking-off with a single foot, and landing on a single foot on a floor reaction force gauge placed ahead and stay still for three seconds for the subjects were 13 healthy females. A soft 6 mm Boron sheet cut in the size of 9 × 3.5 cm, applied with double-sided tape (MLA pad) was used for arch support (hereafter referred to as “pad”). For the lower limb evaluation, an 8-camera with a three-dimensional behavioral analyzer (CORTEX, NAC product, sampling frequency: 120 Hz) and a floor reaction force gauge (AMTI product, sampling frequency: 1000 Hz) were used. Ten successful jump-landing tests for each limb were used for further analyses using Visual 3D software (Cmotion Inc., Kingston, Canada). Analysis objects were knee joint bending angle and valgus angle during landing;knee joint maximum bending angle;bending knee joint valgus angle, hip joint bending angle, adduction angle, ankle joint plantar flexion angle, varus angle at the time of knee joint maximum bending angle;and each joint moment. For statistical processing, the average value of three trials out of five trials was regarded as a representative value. <strong>Results:</strong> Regarding joint angles, significant differences were observed in maximum knee joint bending angle, knee joint bending angle during maximum valgus knee joint and ankle joint varus angle during knee joint maximum bending angle between before and after intervention. No significant differences were observed in other joint angles. Regarding joint moments, no significant difference was observed in each joint moment before and after the intervention. <strong>Significance:</strong> The decrease of knee joint valgus angle during landing by the use of MLA pad suggests the possibility of decreasing the risk of ACL injury. As the incidence of ACL injury in females is higher than that of males, and the evaluation for females had proceeded, it can be useful information for the prevention of ACL injury.展开更多
Pneumatic artificial muscles(PAMs) have properties similar to biological muscles,which are widely used in robotics as actuators.It is difficult to achieve high-precision position control for robotics system driven by ...Pneumatic artificial muscles(PAMs) have properties similar to biological muscles,which are widely used in robotics as actuators.It is difficult to achieve high-precision position control for robotics system driven by PAMs.A 3-DOF musculoskeletal bionic leg mechanism is presented,which is driven by PAMs for quadruped robots.PAM is used to simulate the compliance of biological muscle.The kinematics of the leg swing is derived,and the foot desired trajectory is planned as the sinusoidal functions.The swing experiments of the musculoskeletal leg mechanism are conducted to analyse the extension and flexion of joints.A proportional integral derivative(PID) algorithm is presented for controlling the flexion/extension of the joint.The trajectory tracking results of joints and the PAM gas pressure are obtained.Experimental results show that the developed leg mechanism exhibits good biological properties.展开更多
Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mob...Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mobile/tracked robots, but few of them can be used for legged robots. Two novel human-tracking strategies, view priority strategy and distance priority strategy, are proposed specially for legged robots, which enable them to track humans in various complex terrains. View priority strategy focuses on keeping humans in its view angle arrange with priority, while its counterpart, distance priority strategy, focuses on keeping human at a reasonable distance with priority. To evaluate these strategies, two indexes(average and minimum tracking capability) are defined. With the help of these indexes, the view priority strategy shows advantages compared with distance priority strategy. The optimization is done in terms of these indexes, which let the robot has maximum tracking capability. The simulation results show that the robot can track humans with different curves like square, circular, sine and screw paths. Two novel control strategies are proposed which specially concerning legged robot characteristics to solve human tracking problems more efficiently in rescue circumstances.展开更多
Mine or longwall panel layout is a 3D structure with highly non-uniform stress distribution. Recognition of such fact will facilitate underground problem identification/investigation and solving by numerical modeling ...Mine or longwall panel layout is a 3D structure with highly non-uniform stress distribution. Recognition of such fact will facilitate underground problem identification/investigation and solving by numerical modeling through proper model construction. Due to its versatility, numerical modeling is the most popular method for ground control design and problem solving. However numerical modeling results require highly experienced professionals to interpret its validity/applicability to actual mining operations due to complicated mining and geological conditions. Underground ground control monitoring is routinely performed to predict roof behavior such as weighting and weighting interval without matching observation of face mining condition while the mining pressures are being monitored, resulting in unrealistic interpretation of the obtained data on mining pressure. The importance of ground control pressure monitoring and simultaneous observation of mining and geological conditions is illustrated by an example of shield leg pressure monitoring and interpretation in an U.S. longwall coal mine: it was found that the roof strata act like a plate, not an individual block of the size of a shield dimension, as commonly assumed by all researchers and shield capacity is not a fixed property for a longwall panel or a mine or a coal seam. A new mechanism on the interaction between shield's hydraulic leg pressure and roof strata for shield loading is proposed.展开更多
It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortali...It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation-the transient period between the quiet standing posture and steady state walking-is a functional task that is classically used in the literature to investigate how the central nervous system(CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a prerequisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on:(1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and(2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward:(1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and(2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.展开更多
针对爬楼轮椅前腿的位姿调节机构在工作时不能同时触地及受力失衡等问题,文中提出基于模糊比例-积分-微分(Proportional Integral Derivative, PID)的前腿同步位姿调节控制策略。首先,建立了前腿位姿调节机构驱动装置的数学模型。其次,...针对爬楼轮椅前腿的位姿调节机构在工作时不能同时触地及受力失衡等问题,文中提出基于模糊比例-积分-微分(Proportional Integral Derivative, PID)的前腿同步位姿调节控制策略。首先,建立了前腿位姿调节机构驱动装置的数学模型。其次,根据爬楼轮椅工作要求设定合适的阈值,通过偏差大小来选用最优的控制算法,建立了基于模糊控制策略与模糊自适应PID控制策略。最后,结合模糊PID复合控制模型,实现前腿机构在复杂工况下的有效控制。实验结果表明:采用模糊PID的前腿同步控制系统超调量较小,达到稳态的时间更少,具有较高的稳定性。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.U1613208)
文摘The research on legged robots attracted much attention both from the academia and industry. Legged robots are multi-input multi-output with multiple end-e ector systems. Therefore,the mechanical design and control framework are challenging issues. This paper reviews the development of type synthesis and behavior control on legged robots; introduces the hexapod robots developed in our research group based on the proposed type synthesis method. The control framework for legged robots includes data driven layer,robot behavior layer and robot execution layer. Each layer consists several components which are explained in details. Finally,various experiments were conducted on several hexapod robots. The summarization of the type synthesis and behavior control design constructed in this paper would provide a unified platform for communications and references for future advancement for legged robots.
文摘<strong>Background:</strong> Arch support has the effect of maintaining arch and correcting alignment, and it is broadly used for the prevention of sports impediment and treatment of athletes with lowered MLA and foot problems. The fact that the morphological change of MLA damages balance sense and postural control, it was reported that the insole supporting the arch of MLA improved postural balance. There are several studies regarding the effects of arch support;however, its effects on landing control have not been clarified. Therefore, in our research, we discussed the effect of MLA support for landing control, using lower limb dynamic alignment and the moment during landing as indexes. <strong>Methods: </strong>This study measured the landing motion to be evaluated was to jump from a platform with a height of 30 cm by taking-off with a single foot, and landing on a single foot on a floor reaction force gauge placed ahead and stay still for three seconds for the subjects were 13 healthy females. A soft 6 mm Boron sheet cut in the size of 9 × 3.5 cm, applied with double-sided tape (MLA pad) was used for arch support (hereafter referred to as “pad”). For the lower limb evaluation, an 8-camera with a three-dimensional behavioral analyzer (CORTEX, NAC product, sampling frequency: 120 Hz) and a floor reaction force gauge (AMTI product, sampling frequency: 1000 Hz) were used. Ten successful jump-landing tests for each limb were used for further analyses using Visual 3D software (Cmotion Inc., Kingston, Canada). Analysis objects were knee joint bending angle and valgus angle during landing;knee joint maximum bending angle;bending knee joint valgus angle, hip joint bending angle, adduction angle, ankle joint plantar flexion angle, varus angle at the time of knee joint maximum bending angle;and each joint moment. For statistical processing, the average value of three trials out of five trials was regarded as a representative value. <strong>Results:</strong> Regarding joint angles, significant differences were observed in maximum knee joint bending angle, knee joint bending angle during maximum valgus knee joint and ankle joint varus angle during knee joint maximum bending angle between before and after intervention. No significant differences were observed in other joint angles. Regarding joint moments, no significant difference was observed in each joint moment before and after the intervention. <strong>Significance:</strong> The decrease of knee joint valgus angle during landing by the use of MLA pad suggests the possibility of decreasing the risk of ACL injury. As the incidence of ACL injury in females is higher than that of males, and the evaluation for females had proceeded, it can be useful information for the prevention of ACL injury.
基金Supported by the National Natural Science Foundation of China(No.51375289)Shanghai Municipal National Natural Science Foundation of China(No.13ZR1415500)Innovation Fund of Shanghai Education Commission(No.13YZ020)
文摘Pneumatic artificial muscles(PAMs) have properties similar to biological muscles,which are widely used in robotics as actuators.It is difficult to achieve high-precision position control for robotics system driven by PAMs.A 3-DOF musculoskeletal bionic leg mechanism is presented,which is driven by PAMs for quadruped robots.PAM is used to simulate the compliance of biological muscle.The kinematics of the leg swing is derived,and the foot desired trajectory is planned as the sinusoidal functions.The swing experiments of the musculoskeletal leg mechanism are conducted to analyse the extension and flexion of joints.A proportional integral derivative(PID) algorithm is presented for controlling the flexion/extension of the joint.The trajectory tracking results of joints and the PAM gas pressure are obtained.Experimental results show that the developed leg mechanism exhibits good biological properties.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035501)
文摘Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mobile/tracked robots, but few of them can be used for legged robots. Two novel human-tracking strategies, view priority strategy and distance priority strategy, are proposed specially for legged robots, which enable them to track humans in various complex terrains. View priority strategy focuses on keeping humans in its view angle arrange with priority, while its counterpart, distance priority strategy, focuses on keeping human at a reasonable distance with priority. To evaluate these strategies, two indexes(average and minimum tracking capability) are defined. With the help of these indexes, the view priority strategy shows advantages compared with distance priority strategy. The optimization is done in terms of these indexes, which let the robot has maximum tracking capability. The simulation results show that the robot can track humans with different curves like square, circular, sine and screw paths. Two novel control strategies are proposed which specially concerning legged robot characteristics to solve human tracking problems more efficiently in rescue circumstances.
基金supported by the National Natural Science Foundation of China (Nos. 51604267 and 51704095)
文摘Mine or longwall panel layout is a 3D structure with highly non-uniform stress distribution. Recognition of such fact will facilitate underground problem identification/investigation and solving by numerical modeling through proper model construction. Due to its versatility, numerical modeling is the most popular method for ground control design and problem solving. However numerical modeling results require highly experienced professionals to interpret its validity/applicability to actual mining operations due to complicated mining and geological conditions. Underground ground control monitoring is routinely performed to predict roof behavior such as weighting and weighting interval without matching observation of face mining condition while the mining pressures are being monitored, resulting in unrealistic interpretation of the obtained data on mining pressure. The importance of ground control pressure monitoring and simultaneous observation of mining and geological conditions is illustrated by an example of shield leg pressure monitoring and interpretation in an U.S. longwall coal mine: it was found that the roof strata act like a plate, not an individual block of the size of a shield dimension, as commonly assumed by all researchers and shield capacity is not a fixed property for a longwall panel or a mine or a coal seam. A new mechanism on the interaction between shield's hydraulic leg pressure and roof strata for shield loading is proposed.
文摘It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation-the transient period between the quiet standing posture and steady state walking-is a functional task that is classically used in the literature to investigate how the central nervous system(CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a prerequisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on:(1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and(2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward:(1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and(2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.
文摘针对爬楼轮椅前腿的位姿调节机构在工作时不能同时触地及受力失衡等问题,文中提出基于模糊比例-积分-微分(Proportional Integral Derivative, PID)的前腿同步位姿调节控制策略。首先,建立了前腿位姿调节机构驱动装置的数学模型。其次,根据爬楼轮椅工作要求设定合适的阈值,通过偏差大小来选用最优的控制算法,建立了基于模糊控制策略与模糊自适应PID控制策略。最后,结合模糊PID复合控制模型,实现前腿机构在复杂工况下的有效控制。实验结果表明:采用模糊PID的前腿同步控制系统超调量较小,达到稳态的时间更少,具有较高的稳定性。