The Legendre orthogonal functions are employed to design the family of PID controllers for a variety of plants. In the proposed method, the PID controller and the plant model are represented with their corresponding L...The Legendre orthogonal functions are employed to design the family of PID controllers for a variety of plants. In the proposed method, the PID controller and the plant model are represented with their corresponding Legendre series. Matching the first three terms of the Legendre series of the loop gain with the desired one gives the PID controller parameters. The closed loop system stability conditions in terms of the Legendre basis function pole(λ) for a wide range of systems including the first order, second order, double integrator, first order plus dead time, and first order unstable plants are obtained. For first order and double integrator plants, the closed loop system stability is preserved for all values of λ and for the other plants, an appropriate range in terms of λ is obtained. The optimum value of λ to attain a minimum integral square error performance index in the presence of the control signal constraints is achieved. The numerical simulations demonstrate the benefits of the Legendre based PID controller.展开更多
The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions with negative zeros has been recently generalized onto subharmonic functions with the Riesz measure on a half-line in Rn, n≥3. Here we extend ...The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions with negative zeros has been recently generalized onto subharmonic functions with the Riesz measure on a half-line in Rn, n≥3. Here we extend the Drasin complement to the Valiron-Titchmarsh theorem and show that if u is a subharmonic function of this class and of order 0〈ρ〈1, then the existence of the limit limr→∞logu(r)/N(r), where N(r) is the integrated counting function of the masses of u, implies the regular asymptotic behavior for both u and its associated measure.展开更多
In this paper,we propose a novel Legendre neural network combined with the extreme learning machine algorithm to solve variable coefficients linear delay differential-algebraic equations with weak discontinuities.Firs...In this paper,we propose a novel Legendre neural network combined with the extreme learning machine algorithm to solve variable coefficients linear delay differential-algebraic equations with weak discontinuities.First,the solution interval is divided into multiple subintervals by weak discontinuity points.Then,Legendre neural network is used to eliminate the hidden layer by expanding the input pattern using Legendre polynomials on each subinterval.Finally,the parameters of the neural network are obtained by training with the extreme learning machine.The numerical examples show that the proposed method can effectively deal with the difficulty of numerical simulation caused by the discontinuities.展开更多
文摘The Legendre orthogonal functions are employed to design the family of PID controllers for a variety of plants. In the proposed method, the PID controller and the plant model are represented with their corresponding Legendre series. Matching the first three terms of the Legendre series of the loop gain with the desired one gives the PID controller parameters. The closed loop system stability conditions in terms of the Legendre basis function pole(λ) for a wide range of systems including the first order, second order, double integrator, first order plus dead time, and first order unstable plants are obtained. For first order and double integrator plants, the closed loop system stability is preserved for all values of λ and for the other plants, an appropriate range in terms of λ is obtained. The optimum value of λ to attain a minimum integral square error performance index in the presence of the control signal constraints is achieved. The numerical simulations demonstrate the benefits of the Legendre based PID controller.
文摘The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions with negative zeros has been recently generalized onto subharmonic functions with the Riesz measure on a half-line in Rn, n≥3. Here we extend the Drasin complement to the Valiron-Titchmarsh theorem and show that if u is a subharmonic function of this class and of order 0〈ρ〈1, then the existence of the limit limr→∞logu(r)/N(r), where N(r) is the integrated counting function of the masses of u, implies the regular asymptotic behavior for both u and its associated measure.
基金supported by the National Natural Science Foundation of China(No.11971412)the Natural Science Foundation of Hunan Province of China(No.2018JJ2378)Scientific Research Fund of Hunan Provincial Science and Technology Department(No.2018WK4006).
文摘In this paper,we propose a novel Legendre neural network combined with the extreme learning machine algorithm to solve variable coefficients linear delay differential-algebraic equations with weak discontinuities.First,the solution interval is divided into multiple subintervals by weak discontinuity points.Then,Legendre neural network is used to eliminate the hidden layer by expanding the input pattern using Legendre polynomials on each subinterval.Finally,the parameters of the neural network are obtained by training with the extreme learning machine.The numerical examples show that the proposed method can effectively deal with the difficulty of numerical simulation caused by the discontinuities.