期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Constructing quasi-random subsets of Z_N by using elliptic curves
1
作者 LIN Zhi-xing CHEN Zhi-xiong 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2012年第1期105-113,共9页
Let ε : y^2 = x3 + Ax + B be an elliptic curve defined over the finite field Zp(p 〉 3) and G be a rational point of prime order N on ε. Define a subset of ZN, the residue class ring modulo N, asS:={n:n∈ZN,n... Let ε : y^2 = x3 + Ax + B be an elliptic curve defined over the finite field Zp(p 〉 3) and G be a rational point of prime order N on ε. Define a subset of ZN, the residue class ring modulo N, asS:={n:n∈ZN,n≠0,(X(nG)/p)=1} where X(nG) denotes the x-axis of the rational points nC and (*/P) is the Legendre symbol. Some explicit results on quasi-randomness of S are investigated. The construction depends on the intrinsic group structures of elliptic curves and character sums along elliptic curves play an important role in the proofs. 展开更多
关键词 elliptic curve quasi-random subset quasi-randomness character sum legendre symbol.
下载PDF
Proof of Two Supercongruences of Truncated Hypergeometric Series_(4)F_(3)
2
作者 Guo Shuai MAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第4期1015-1028,共14页
In this paper,we prove two supercongruences conjectured by Z.-W.Sun via the Wilf-Zeilberger method.One of them is,for any prime p>3,4F3[7/6 1/2 1/2 1/2 1/6 1 1]-1/8]-1/2≡p(-2/p)+p^(3)/4(2/p)Ep-3 (mod p^(4))where(&... In this paper,we prove two supercongruences conjectured by Z.-W.Sun via the Wilf-Zeilberger method.One of them is,for any prime p>3,4F3[7/6 1/2 1/2 1/2 1/6 1 1]-1/8]-1/2≡p(-2/p)+p^(3)/4(2/p)Ep-3 (mod p^(4))where(·/p)stands for the Legendre symbol,and E_(n)is the n-th Euler number. 展开更多
关键词 Supercongruence truncated hypergeometric series Wilf–Zeilberger method Euler numbers legendre symbol
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部