Let ε : y^2 = x3 + Ax + B be an elliptic curve defined over the finite field Zp(p 〉 3) and G be a rational point of prime order N on ε. Define a subset of ZN, the residue class ring modulo N, asS:={n:n∈ZN,n...Let ε : y^2 = x3 + Ax + B be an elliptic curve defined over the finite field Zp(p 〉 3) and G be a rational point of prime order N on ε. Define a subset of ZN, the residue class ring modulo N, asS:={n:n∈ZN,n≠0,(X(nG)/p)=1} where X(nG) denotes the x-axis of the rational points nC and (*/P) is the Legendre symbol. Some explicit results on quasi-randomness of S are investigated. The construction depends on the intrinsic group structures of elliptic curves and character sums along elliptic curves play an important role in the proofs.展开更多
In this paper,we prove two supercongruences conjectured by Z.-W.Sun via the Wilf-Zeilberger method.One of them is,for any prime p>3,4F3[7/6 1/2 1/2 1/2 1/6 1 1]-1/8]-1/2≡p(-2/p)+p^(3)/4(2/p)Ep-3 (mod p^(4))where(&...In this paper,we prove two supercongruences conjectured by Z.-W.Sun via the Wilf-Zeilberger method.One of them is,for any prime p>3,4F3[7/6 1/2 1/2 1/2 1/6 1 1]-1/8]-1/2≡p(-2/p)+p^(3)/4(2/p)Ep-3 (mod p^(4))where(·/p)stands for the Legendre symbol,and E_(n)is the n-th Euler number.展开更多
基金Supported by the National Natural Science Foundation of China(No.61170246)the Program for New Century Excellent Talents in Fujian Province University of China(No.JK2010047)the Open Funds of State Key Laboratory of Information Security (Chinese Academy of Sciences)(No.01-01-1)
文摘Let ε : y^2 = x3 + Ax + B be an elliptic curve defined over the finite field Zp(p 〉 3) and G be a rational point of prime order N on ε. Define a subset of ZN, the residue class ring modulo N, asS:={n:n∈ZN,n≠0,(X(nG)/p)=1} where X(nG) denotes the x-axis of the rational points nC and (*/P) is the Legendre symbol. Some explicit results on quasi-randomness of S are investigated. The construction depends on the intrinsic group structures of elliptic curves and character sums along elliptic curves play an important role in the proofs.
基金Supported by the National Natural Science Foundation of China(Grant No.12001288)。
文摘In this paper,we prove two supercongruences conjectured by Z.-W.Sun via the Wilf-Zeilberger method.One of them is,for any prime p>3,4F3[7/6 1/2 1/2 1/2 1/6 1 1]-1/8]-1/2≡p(-2/p)+p^(3)/4(2/p)Ep-3 (mod p^(4))where(·/p)stands for the Legendre symbol,and E_(n)is the n-th Euler number.