Monopiles are the most common foundation form of offshore wind turbines,which bear the vertical load,lateral load and bending moment.It remains uncertain whether the applied vertical load increases the lateral deflect...Monopiles are the most common foundation form of offshore wind turbines,which bear the vertical load,lateral load and bending moment.It remains uncertain whether the applied vertical load increases the lateral deflection of the pile.This paper investigated the influence of vertical load on the behaviour of monopiles installed in the sand under combined load using three-dimensional numerical methods.The commercial software PLAXIS was used for simulations in this paper.Monopiles were modelled as a structure incorporating linear elastic material behaviour and soil was modelled using the Hardening-Soil(HS)constitutive model.The monopiles under vertical load,lateral load and combined vertical and lateral loads were respectively studied taking into account the sequence of load application and pile slenderness ratio(L/D;L and D are the length and diameter of the pile).Results suggest that the sequence of load application plays a major role in how vertical load affects the deflection behaviour of the pile.Specifically,when L/D ratios obtained by lengthening the pile while keeping its diameter constant are 3,5 and 8,the relationships between lateral load and the deflection behaviour of the pile under the effect of vertical load demonstrate a similar trend.Furthermore,the cause of increased lateral capacity of the pile under the action of applied vertical load in the common practical application case and in the VPL case was analyzed by studying the variation law of soil stress along the pile embedment.Results confirm that the confining effect of vertical load increases means effective stress of the soil around the pile,thus increasing soil stiffness and pile capacity.展开更多
Monopiles are the most common foundation form of offshore wind turbines,which bear the vertical load,lateral load and bending moment.It remains uncertain whether the applied vertical load increases the lateral deflect...Monopiles are the most common foundation form of offshore wind turbines,which bear the vertical load,lateral load and bending moment.It remains uncertain whether the applied vertical load increases the lateral deflection of the pile.This paper investigated the influence of vertical load on the behaviour of monopiles installed in the sand under combined load using three-dimensional numerical methods.The commercial software PLAXIS was used for simulations in this paper.Monopiles were modelled as a structure incorporating linear elastic material behaviour and soil was modelled using the Hardening-Soil(HS)constitutive model.The monopiles under vertical load,lateral load and combined vertical and lateral loads were respectively studied taking into account the sequence of load application and pile slenderness ratio(L/D;L and D are the length and diameter of the pile).Results suggest that the sequence of load application plays a major role in how vertical load affects the deflection behaviour of the pile.Specifically,when L/D ratios obtained by lengthening the pile while keeping its diameter constant are 3,5 and 8,the relationships between lateral load and the deflection behaviour of the pile under the effect of vertical load demonstrate a similar trend.Furthermore,the cause of increased lateral capacity of the pile under the action of applied vertical load in the common practical application case and in the VPL case was analyzed by studying the variation law of soil stress along the pile embedment.Results confirm that the confining effect of vertical load increases means effective stress of the soil around the pile,thus increasing soil stiffness and pile capacity.展开更多
For monomer reactivity ratios study, the copolymerization of D,L-3-methylglycolide (MG) with glycolide (GA) or D,L-lactide (LA) was carried out in bulk to a certain low conversion in the presence of stannous octoate a...For monomer reactivity ratios study, the copolymerization of D,L-3-methylglycolide (MG) with glycolide (GA) or D,L-lactide (LA) was carried out in bulk to a certain low conversion in the presence of stannous octoate at 140 degrees C. The copolymer compositions were determined by H-1 NMR spectroscopy. The monomer reactivity ratios were evaluated by Fineman-Ross method, Kelen-Tudos method and linear least-squares method. The monomer reactivity ratios of D,L-3-methylglycolide and glycolide or D,L-lactide are r(mg)= 0.73, r(ga)= 1.47; r(mg)= 1.71, r(la)= 0.92, respectively.展开更多
Soil organic nitrogen(ON)accounts for more than 90%of the total nitrogen(TN)in paddy soils.Inadequate understanding of the different ON fractions in paddy soils and their corresponding bioavailability under different ...Soil organic nitrogen(ON)accounts for more than 90%of the total nitrogen(TN)in paddy soils.Inadequate understanding of the different ON fractions in paddy soils and their corresponding bioavailability under different climatic conditions has constrained the development of appropriate nutrient management strategies for rice production.In this study,we applied a modified Bremner method coupled with high-performance liquid chromatography to characterize how soil ON fractions and amino acid chirality varied under different climatic conditions at five typical rice production sites along a latitudinal gradient.According to the results,climate had no obvious influence on TN,nitrogen(N)form,and individual amino acid contents.However,the proportions of various N forms in TN had linear relationships with annual mean temperature(AMT),with high correlation coefficient(r)values.Amino acid components also exhibited similar trends,with r as high as 0.85.Most notably,consistent linear relationships were observed between the D/L ratios of several amino acids and AMT in paddy soils(r=0.18–0.92).Findings of this study provide insights into ON and amino acid dynamics in paddy soil systems under intensive production along climate gradients.展开更多
文摘Monopiles are the most common foundation form of offshore wind turbines,which bear the vertical load,lateral load and bending moment.It remains uncertain whether the applied vertical load increases the lateral deflection of the pile.This paper investigated the influence of vertical load on the behaviour of monopiles installed in the sand under combined load using three-dimensional numerical methods.The commercial software PLAXIS was used for simulations in this paper.Monopiles were modelled as a structure incorporating linear elastic material behaviour and soil was modelled using the Hardening-Soil(HS)constitutive model.The monopiles under vertical load,lateral load and combined vertical and lateral loads were respectively studied taking into account the sequence of load application and pile slenderness ratio(L/D;L and D are the length and diameter of the pile).Results suggest that the sequence of load application plays a major role in how vertical load affects the deflection behaviour of the pile.Specifically,when L/D ratios obtained by lengthening the pile while keeping its diameter constant are 3,5 and 8,the relationships between lateral load and the deflection behaviour of the pile under the effect of vertical load demonstrate a similar trend.Furthermore,the cause of increased lateral capacity of the pile under the action of applied vertical load in the common practical application case and in the VPL case was analyzed by studying the variation law of soil stress along the pile embedment.Results confirm that the confining effect of vertical load increases means effective stress of the soil around the pile,thus increasing soil stiffness and pile capacity.
基金supported by High-Tech Ship Scientific Research Project in 2018(Research on Key Technologies of Polar Small Cruise Ship Design and Construction,Ministry of Industry and Information Technology Packing Letter[2018]No.473Emergency Evacuation Chute System Development,Ministry of Industry and Information Technology Packing Letter[2017]No.614).
文摘Monopiles are the most common foundation form of offshore wind turbines,which bear the vertical load,lateral load and bending moment.It remains uncertain whether the applied vertical load increases the lateral deflection of the pile.This paper investigated the influence of vertical load on the behaviour of monopiles installed in the sand under combined load using three-dimensional numerical methods.The commercial software PLAXIS was used for simulations in this paper.Monopiles were modelled as a structure incorporating linear elastic material behaviour and soil was modelled using the Hardening-Soil(HS)constitutive model.The monopiles under vertical load,lateral load and combined vertical and lateral loads were respectively studied taking into account the sequence of load application and pile slenderness ratio(L/D;L and D are the length and diameter of the pile).Results suggest that the sequence of load application plays a major role in how vertical load affects the deflection behaviour of the pile.Specifically,when L/D ratios obtained by lengthening the pile while keeping its diameter constant are 3,5 and 8,the relationships between lateral load and the deflection behaviour of the pile under the effect of vertical load demonstrate a similar trend.Furthermore,the cause of increased lateral capacity of the pile under the action of applied vertical load in the common practical application case and in the VPL case was analyzed by studying the variation law of soil stress along the pile embedment.Results confirm that the confining effect of vertical load increases means effective stress of the soil around the pile,thus increasing soil stiffness and pile capacity.
基金This work was supported by the Key Project of the National Natural Science Foundation of China!(59833 140).
文摘For monomer reactivity ratios study, the copolymerization of D,L-3-methylglycolide (MG) with glycolide (GA) or D,L-lactide (LA) was carried out in bulk to a certain low conversion in the presence of stannous octoate at 140 degrees C. The copolymer compositions were determined by H-1 NMR spectroscopy. The monomer reactivity ratios were evaluated by Fineman-Ross method, Kelen-Tudos method and linear least-squares method. The monomer reactivity ratios of D,L-3-methylglycolide and glycolide or D,L-lactide are r(mg)= 0.73, r(ga)= 1.47; r(mg)= 1.71, r(la)= 0.92, respectively.
基金supported by the National Natural Science Foundation of China(No.41671296)Special Project on the Basis of National Science and Technology of China(No.2015FY110700).
文摘Soil organic nitrogen(ON)accounts for more than 90%of the total nitrogen(TN)in paddy soils.Inadequate understanding of the different ON fractions in paddy soils and their corresponding bioavailability under different climatic conditions has constrained the development of appropriate nutrient management strategies for rice production.In this study,we applied a modified Bremner method coupled with high-performance liquid chromatography to characterize how soil ON fractions and amino acid chirality varied under different climatic conditions at five typical rice production sites along a latitudinal gradient.According to the results,climate had no obvious influence on TN,nitrogen(N)form,and individual amino acid contents.However,the proportions of various N forms in TN had linear relationships with annual mean temperature(AMT),with high correlation coefficient(r)values.Amino acid components also exhibited similar trends,with r as high as 0.85.Most notably,consistent linear relationships were observed between the D/L ratios of several amino acids and AMT in paddy soils(r=0.18–0.92).Findings of this study provide insights into ON and amino acid dynamics in paddy soil systems under intensive production along climate gradients.