The effects of the gravitational redshift of gravitons upon spiral galaxy rotation energy are compared to the standard mass to light analyses in obtaining rotation curves. The derivation of the total baryonic matter c...The effects of the gravitational redshift of gravitons upon spiral galaxy rotation energy are compared to the standard mass to light analyses in obtaining rotation curves. The derivation of the total baryonic matter compares well with the standard theory and the rotation velocity is matched to a high precision. The stellar mass distributions obtained from the fit with graviton energy loss are used to derive the surface brightness magnitudes for the galaxies, which agree well with the observed measurements. In a new field of investigation, the graviton theory is applied to the observations of gravitational lenses. The results of these applications of the theory suggest that it can augment the standard methods and may eliminate the need for dark matter.展开更多
The energy crisis has aroused widespread concern, and the reform of energy structure is imminent. In the future,the energy structure will be dominated by the solar energy and other renewable energy sources. The solar ...The energy crisis has aroused widespread concern, and the reform of energy structure is imminent. In the future,the energy structure will be dominated by the solar energy and other renewable energy sources. The solar concentrating technology as a promising method has been widely studied for collecting solar energy. However, the previous solar concentrating technologies suffer from some drawbacks, such as low focusing efficiency and large concentrating size. The Luneburg lens with highly efficient aberration-free focusing provides a new route for solar/energy concentrator. In this work, we designed a plane focal surface Luneburg lens(PFSLL) by transformation optics(TO). The PFSLL provides a relatively high focusing efficiency and concentration ratio of collection of energy. At the same time, it circumvents the disadvantage of curve surface of the classical Luneburg lens in device integration. Based on the reciprocity of electromagnetic waves, the PFSLL can also be applied to the antenna field to achieve broadband wide-angle scanning and highly directional radiation.展开更多
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtos...Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.展开更多
Simple and efficient nanofabrication technology with low cost and high flexibility is indispensable for fundamental nanoscale research and prototyping.Lithography in the near field using the surface plasmon polariton(...Simple and efficient nanofabrication technology with low cost and high flexibility is indispensable for fundamental nanoscale research and prototyping.Lithography in the near field using the surface plasmon polariton(i.e.,plasmonic lithography)provides a promising solution.The system with high stiffness passive nanogap control strategy on a high-speed rotating substrate is one of the most attractive highthroughput methods.However,a smaller and steadier plasmonic nanogap,new scheme of plasmonic lens,and parallel processing should be explored to achieve a new generation high resolution and reliable efficient nanofabrication.Herein,a parallel plasmonic direct-writing nanolithography system is established in which a novel plasmonic flying head is systematically designed to achieve around 15 nm minimum flying-height with high parallelism at the rotating speed of 8–18 m·s^(-1).A multi-stage metasurface-based polarization insensitive plasmonic lens is proposed to couple more power and realize a more confined spot compared with conventional plasmonic lenses.Parallel lithography of the nanostructures with the smallest(around 26 nm)linewidth is obtained with the prototyping system.The proposed system holds great potential for high-freedom nanofabrication with low cost,such as planar optical elements and nano-electromechanical systems.展开更多
【正】Dear Sir,Iam Yong-Sun Ahn,from the Department of Ophthalmology of St.Vincent Hospital of Suwon,Kyungki-do,South Korea.Cataracts are a common problem in eyes with a glaucoma drainage device(GDD),because tube shun...【正】Dear Sir,Iam Yong-Sun Ahn,from the Department of Ophthalmology of St.Vincent Hospital of Suwon,Kyungki-do,South Korea.Cataracts are a common problem in eyes with a glaucoma drainage device(GDD),because tube shunt surgery increases the incidence and progression of cataracts[1].An Ahmed valve,the most commonly inserted GDD,is composed of a silicone tube connected to a flat plate sewn to the sclera,and aqueous humor flows from the展开更多
In this study, the polyacrylate intraocularr lens is irradiated by argon ion which can produce free radicals. In order to obtain better hydrophilic and lower platelets adhesion, monomer vinyl pyrrolidone (NVP) is graf...In this study, the polyacrylate intraocularr lens is irradiated by argon ion which can produce free radicals. In order to obtain better hydrophilic and lower platelets adhesion, monomer vinyl pyrrolidone (NVP) is grafted onto the hydrophobic polyacrylate intraocular lens surface in a certain reaction conditions. Specific changes in intraocular lens are detected by static contact angle (CA), scanning electron microscope (SEM) and light transmittance. The results show that this surface modification can greatly improve its hydrophilic character and surface formation.展开更多
Objective:To study the characteristics of the intraocular lens using ion beam sputtering depositing titanium nitride thin film on the intraocular lens(IOLs).Methods:To deposite titanium nitride thin film on the top of...Objective:To study the characteristics of the intraocular lens using ion beam sputtering depositing titanium nitride thin film on the intraocular lens(IOLs).Methods:To deposite titanium nitride thin film on the top of intraocular lens by ion beam sputtering depositing.We analyzed the surface morphology of intraocular lens through SEM and AFM.We detected intraocular lens resolution through the measurement of intraocular lens.Biocompatibility of intraocular lens is preliminary evaluated in this test.Results:The surface morphology of intraocular lens material was not changed,and was in line with the requirements of smoothness.Resolution was in line with national requirements.Unmodified and modified IOLs's cytotoxicity were 1 and 0.6 grade respectively.Hemolytic rates of modified and unmodified were both less than 5%.Conclusion:Ion beam sputtering deposition of objects didn't only affect the surface morphology and the basic optical performance,but also can enhance the biocompatibility of intraocular lens.Ion beam sputtering deposition technique has provided new methods for the surface modification of IOLs and PMMA materials.展开更多
In his beautiful book,Consilience:The Unity of Knowledge,the eminent biologist Edward O Wilson,advocates the need for integration and reconciliation across the sciences.He defines consilience as“literally a‘jumping ...In his beautiful book,Consilience:The Unity of Knowledge,the eminent biologist Edward O Wilson,advocates the need for integration and reconciliation across the sciences.He defines consilience as“literally a‘jumping together’of knowledge with a linking of facts…to create a common groundwork of explanation”.It is the premise of this paper that as much as basic biomedical research is in need of data generation using the latest available techniques–unifying available knowledge is just as critical.This involves the necessity to resolve contradictory findings,reduce silos,and acknowledge complexity.We take the cornea and the lens as case studies of our premise.Specifically,in this perspective,we discuss the conflicting and fragmented information on protein aggregation,oxidative damage,and fibrosis.These are fields of study that are integrally tied to anterior segment research.Our goal is to highlight the vital need for Wilson’s consilience and unity of knowledge which in turn should lead to enhanced rigor and reproducibility,and most importantly,to greater understanding and not simply knowing.展开更多
Surface modification with dielectric barrier discharge(DBD) plasma was carried out at atmospheric pressure(argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens(IOL).Chan...Surface modification with dielectric barrier discharge(DBD) plasma was carried out at atmospheric pressure(argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens(IOL).Changes of the plasma-treated IOL surface in chemical composition,morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy(XPS),field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM) and water contact angle(WCA) measurements.The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets,macrophages and lens epithelial cells(LECs) in vitro.After DBD plasma treatment,the hydrophilicity of the IOL surface was obviously improved.The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect.The existence of low molecular weight oxidized material(LMWOM) was proved on the plasma-treated IOL which was caused by the chain scission effect of the plasma treatment.The plasma-treated IOLs resisted the adhesion of platelets and macrophages significantly.The LECs spreading and proliferation were postponed on the IOLs plasma-treated for more than 180 s,with a well maintained epithelial phenotype of LECs.The IOL biocompatibility was improved after the DBD plasma treatment.We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification(ACO) may be expected after implantation of the argon DBD plasma-treated IOL.展开更多
文摘The effects of the gravitational redshift of gravitons upon spiral galaxy rotation energy are compared to the standard mass to light analyses in obtaining rotation curves. The derivation of the total baryonic matter compares well with the standard theory and the rotation velocity is matched to a high precision. The stellar mass distributions obtained from the fit with graviton energy loss are used to derive the surface brightness magnitudes for the galaxies, which agree well with the observed measurements. In a new field of investigation, the graviton theory is applied to the observations of gravitational lenses. The results of these applications of the theory suggest that it can augment the standard methods and may eliminate the need for dark matter.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0710100)the National Natural Science Foundation of China (Grant Nos. 92050102 and 11874311)+1 种基金the Shenzhen Science and Technology Program (Grant No. JCYJ20210324121610028)the Fundamental Research Funds for the Central Universities (Grant Nos. 20720220033 and 20720200074)。
文摘The energy crisis has aroused widespread concern, and the reform of energy structure is imminent. In the future,the energy structure will be dominated by the solar energy and other renewable energy sources. The solar concentrating technology as a promising method has been widely studied for collecting solar energy. However, the previous solar concentrating technologies suffer from some drawbacks, such as low focusing efficiency and large concentrating size. The Luneburg lens with highly efficient aberration-free focusing provides a new route for solar/energy concentrator. In this work, we designed a plane focal surface Luneburg lens(PFSLL) by transformation optics(TO). The PFSLL provides a relatively high focusing efficiency and concentration ratio of collection of energy. At the same time, it circumvents the disadvantage of curve surface of the classical Luneburg lens in device integration. Based on the reciprocity of electromagnetic waves, the PFSLL can also be applied to the antenna field to achieve broadband wide-angle scanning and highly directional radiation.
文摘Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.
基金We acknowledge the financial support by the National Natural Science Foundation of China(91623105 and 52005175)Natural Science Foundation of Hunan Province of China(2020JJ5059).
文摘Simple and efficient nanofabrication technology with low cost and high flexibility is indispensable for fundamental nanoscale research and prototyping.Lithography in the near field using the surface plasmon polariton(i.e.,plasmonic lithography)provides a promising solution.The system with high stiffness passive nanogap control strategy on a high-speed rotating substrate is one of the most attractive highthroughput methods.However,a smaller and steadier plasmonic nanogap,new scheme of plasmonic lens,and parallel processing should be explored to achieve a new generation high resolution and reliable efficient nanofabrication.Herein,a parallel plasmonic direct-writing nanolithography system is established in which a novel plasmonic flying head is systematically designed to achieve around 15 nm minimum flying-height with high parallelism at the rotating speed of 8–18 m·s^(-1).A multi-stage metasurface-based polarization insensitive plasmonic lens is proposed to couple more power and realize a more confined spot compared with conventional plasmonic lenses.Parallel lithography of the nanostructures with the smallest(around 26 nm)linewidth is obtained with the prototyping system.The proposed system holds great potential for high-freedom nanofabrication with low cost,such as planar optical elements and nano-electromechanical systems.
文摘【正】Dear Sir,Iam Yong-Sun Ahn,from the Department of Ophthalmology of St.Vincent Hospital of Suwon,Kyungki-do,South Korea.Cataracts are a common problem in eyes with a glaucoma drainage device(GDD),because tube shunt surgery increases the incidence and progression of cataracts[1].An Ahmed valve,the most commonly inserted GDD,is composed of a silicone tube connected to a flat plate sewn to the sclera,and aqueous humor flows from the
基金National Natural Science of Foundation of Chinagrant number:81070716
文摘In this study, the polyacrylate intraocularr lens is irradiated by argon ion which can produce free radicals. In order to obtain better hydrophilic and lower platelets adhesion, monomer vinyl pyrrolidone (NVP) is grafted onto the hydrophobic polyacrylate intraocular lens surface in a certain reaction conditions. Specific changes in intraocular lens are detected by static contact angle (CA), scanning electron microscope (SEM) and light transmittance. The results show that this surface modification can greatly improve its hydrophilic character and surface formation.
文摘Objective:To study the characteristics of the intraocular lens using ion beam sputtering depositing titanium nitride thin film on the intraocular lens(IOLs).Methods:To deposite titanium nitride thin film on the top of intraocular lens by ion beam sputtering depositing.We analyzed the surface morphology of intraocular lens through SEM and AFM.We detected intraocular lens resolution through the measurement of intraocular lens.Biocompatibility of intraocular lens is preliminary evaluated in this test.Results:The surface morphology of intraocular lens material was not changed,and was in line with the requirements of smoothness.Resolution was in line with national requirements.Unmodified and modified IOLs's cytotoxicity were 1 and 0.6 grade respectively.Hemolytic rates of modified and unmodified were both less than 5%.Conclusion:Ion beam sputtering deposition of objects didn't only affect the surface morphology and the basic optical performance,but also can enhance the biocompatibility of intraocular lens.Ion beam sputtering deposition technique has provided new methods for the surface modification of IOLs and PMMA materials.
文摘In his beautiful book,Consilience:The Unity of Knowledge,the eminent biologist Edward O Wilson,advocates the need for integration and reconciliation across the sciences.He defines consilience as“literally a‘jumping together’of knowledge with a linking of facts…to create a common groundwork of explanation”.It is the premise of this paper that as much as basic biomedical research is in need of data generation using the latest available techniques–unifying available knowledge is just as critical.This involves the necessity to resolve contradictory findings,reduce silos,and acknowledge complexity.We take the cornea and the lens as case studies of our premise.Specifically,in this perspective,we discuss the conflicting and fragmented information on protein aggregation,oxidative damage,and fibrosis.These are fields of study that are integrally tied to anterior segment research.Our goal is to highlight the vital need for Wilson’s consilience and unity of knowledge which in turn should lead to enhanced rigor and reproducibility,and most importantly,to greater understanding and not simply knowing.
基金Supported by the Zhejiang Natural Science Foundation of China (Grant No. 2004C23003)
文摘Surface modification with dielectric barrier discharge(DBD) plasma was carried out at atmospheric pressure(argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens(IOL).Changes of the plasma-treated IOL surface in chemical composition,morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy(XPS),field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM) and water contact angle(WCA) measurements.The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets,macrophages and lens epithelial cells(LECs) in vitro.After DBD plasma treatment,the hydrophilicity of the IOL surface was obviously improved.The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect.The existence of low molecular weight oxidized material(LMWOM) was proved on the plasma-treated IOL which was caused by the chain scission effect of the plasma treatment.The plasma-treated IOLs resisted the adhesion of platelets and macrophages significantly.The LECs spreading and proliferation were postponed on the IOLs plasma-treated for more than 180 s,with a well maintained epithelial phenotype of LECs.The IOL biocompatibility was improved after the DBD plasma treatment.We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification(ACO) may be expected after implantation of the argon DBD plasma-treated IOL.