Objective To optimize experimental parameters for the photosensitization of 5-aminolevulinic acid (ALA) in promyelocytic leukemia cell HL60 and compare them with normal human peripheral blood mononuclear cell (PBMC). ...Objective To optimize experimental parameters for the photosensitization of 5-aminolevulinic acid (ALA) in promyelocytic leukemia cell HL60 and compare them with normal human peripheral blood mononuclear cell (PBMC). Methods ALA incubation time, wavelength applied to irradiate, concentration of ALA incubated, irradiation fluence may modulate the effect of 5-aminolevulinic acid based Photodynamic Therapy (ALA-PDT).The high-pressure mercury lamps of 400W served as light source, the interference filter of 410nm, 432nm, 545nm, 577nm were used to select the specific wavelength. Fluorescence microscope was used to detect the fluorescence intensity and location of protoporphyrin IX (PpIX) endogenously produced by ALA. MTT assay was used to measure the survival of cell. Flow cytometry with ANNEXIN V FITC kit (contains annexin V FITC, binding buffer and PI) was used to detect the mode of cell death. Results ① 1mmol/L ALA incubated 1×105/mL HL60 cell line for 4 hours, the maximum fluorescence of ALA induced PpIX was detected in cytomembrane. ② Irradiated with 410nm for 14.4J/cm2 can result in the minimum survivability of HL60 cell. ③ The main mode of HL60 cell death caused by ALA-PDT is necrosis. Conclusion ALA for 1mmol/L, 4 hours for dark incubation time, 410nm for irradiation wavelength, 14.4J/cm2 for irradiation fluence were the optimal parameters to selectively eliminate promyelocytic leukemia cell HL60 by ALA based PDT. The photosensitization of ALA based PDT caused the necrosis of HL60 cell, so it could be used for inactivation of certain leukemia cells.展开更多
Arsenic Trioxide (ATO) is widely acknowledged as the treatment of choice for Acute Promyelocytic Leukemia (APL). It is a “two-sided” drug since it can induce differentiation or kill APL and other tumor cells accordi...Arsenic Trioxide (ATO) is widely acknowledged as the treatment of choice for Acute Promyelocytic Leukemia (APL). It is a “two-sided” drug since it can induce differentiation or kill APL and other tumor cells according to the dosage. Part of the cytotoxic effects of ATO on APL cells is due to its pro-oxidant activity, a characteristic which ATO shares with a number of other compounds, including high doses of ascorbate (ASC). In a comparative investigation on the cytotoxic effects of both ATO and ASC on HL60 (APL) cell lines, in Vitro, we have been able to confirm the known cytotoxic effects of ATO, but, more importantly, we have demonstrated that ASC is significantly more effective than ATO, in killing these cancer cells in Vitro, when the concentrations are maintained within the millimolar (mM) range, i.e. the range of plasma concentrations at which ASC induces oxidative damage to tumor cells. Since these plasma levels can be reached only by the intravenous administration of high doses of ASC, we propose that intravenous high doses of ASC may represent a potentially revolutionary new approach in the management of APL.展开更多
文摘Objective To optimize experimental parameters for the photosensitization of 5-aminolevulinic acid (ALA) in promyelocytic leukemia cell HL60 and compare them with normal human peripheral blood mononuclear cell (PBMC). Methods ALA incubation time, wavelength applied to irradiate, concentration of ALA incubated, irradiation fluence may modulate the effect of 5-aminolevulinic acid based Photodynamic Therapy (ALA-PDT).The high-pressure mercury lamps of 400W served as light source, the interference filter of 410nm, 432nm, 545nm, 577nm were used to select the specific wavelength. Fluorescence microscope was used to detect the fluorescence intensity and location of protoporphyrin IX (PpIX) endogenously produced by ALA. MTT assay was used to measure the survival of cell. Flow cytometry with ANNEXIN V FITC kit (contains annexin V FITC, binding buffer and PI) was used to detect the mode of cell death. Results ① 1mmol/L ALA incubated 1×105/mL HL60 cell line for 4 hours, the maximum fluorescence of ALA induced PpIX was detected in cytomembrane. ② Irradiated with 410nm for 14.4J/cm2 can result in the minimum survivability of HL60 cell. ③ The main mode of HL60 cell death caused by ALA-PDT is necrosis. Conclusion ALA for 1mmol/L, 4 hours for dark incubation time, 410nm for irradiation wavelength, 14.4J/cm2 for irradiation fluence were the optimal parameters to selectively eliminate promyelocytic leukemia cell HL60 by ALA based PDT. The photosensitization of ALA based PDT caused the necrosis of HL60 cell, so it could be used for inactivation of certain leukemia cells.
文摘Arsenic Trioxide (ATO) is widely acknowledged as the treatment of choice for Acute Promyelocytic Leukemia (APL). It is a “two-sided” drug since it can induce differentiation or kill APL and other tumor cells according to the dosage. Part of the cytotoxic effects of ATO on APL cells is due to its pro-oxidant activity, a characteristic which ATO shares with a number of other compounds, including high doses of ascorbate (ASC). In a comparative investigation on the cytotoxic effects of both ATO and ASC on HL60 (APL) cell lines, in Vitro, we have been able to confirm the known cytotoxic effects of ATO, but, more importantly, we have demonstrated that ASC is significantly more effective than ATO, in killing these cancer cells in Vitro, when the concentrations are maintained within the millimolar (mM) range, i.e. the range of plasma concentrations at which ASC induces oxidative damage to tumor cells. Since these plasma levels can be reached only by the intravenous administration of high doses of ASC, we propose that intravenous high doses of ASC may represent a potentially revolutionary new approach in the management of APL.