期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
HOG-VGG:VGG Network with HOG Feature Fusion for High-Precision PolSAR Terrain Classification
1
作者 Jiewen Li Zhicheng Zhao +2 位作者 Yanlan Wu Jiaqiu Ai Jun Shi 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期1-15,共15页
This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep ... This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively. 展开更多
关键词 PolSAR terrain classification high⁃precision HOG⁃VGG feature representation completeness elevation multi⁃level feature fusion
下载PDF
Machine Learning for Data Fusion:A Fuzzy AHP Approach for Open Issues
2
作者 Vinay Kukreja Asha Abraham +3 位作者 K.Kalaiselvi K.Deepa Thilak Shanmugasundaram Hariharan Shih-Yu Chen 《Computers, Materials & Continua》 SCIE EI 2023年第12期2899-2914,共16页
Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original dat... Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original data,which are often imperfect,inconsistent,complex,and uncertain.Traditional data fusion methods like probabilistic fusion,set-based fusion,and evidential belief reasoning fusion methods are computationally complex and require accurate classification and proper handling of raw data.Data fusion is the process of integrating multiple data sources.Data filtering means examining a dataset to exclude,rearrange,or apportion data according to the criteria.Different sensors generate a large amount of data,requiring the development of machine learning(ML)algorithms to overcome the challenges of traditional methods.The advancement in hardware acceleration and the abundance of data from various sensors have led to the development of machine learning(ML)algorithms,expected to address the limitations of traditional methods.However,many open issues still exist as machine learning algorithms are used for data fusion.From the literature,nine issues have been identified irrespective of any application.The decision-makers should pay attention to these issues as data fusion becomes more applicable and successful.A fuzzy analytical hierarchical process(FAHP)enables us to handle these issues.It helps to get the weights for each corresponding issue and rank issues based on these calculated weights.The most significant issue identified is the lack of deep learning models used for data fusion that improve accuracy and learning quality weighted 0.141.The least significant one is the cross-domain multimodal data fusion weighted 0.076 because the whole semantic knowledge for multimodal data cannot be captured. 展开更多
关键词 Signal level fusion feature level fusion decision level fusion fuzzy hierarchical process machine learning
下载PDF
An Optimized Deep Learning Model for Emotion Classification in Tweets 被引量:1
3
作者 Chinu Singla Fahd NAl-Wesabi +5 位作者 Yash Singh Pathania Badria Sulaiman Alfurhood Anwer Mustafa Hilal Mohammed Rizwanullah Manar Ahmed Hamza Mohammad Mahzari 《Computers, Materials & Continua》 SCIE EI 2022年第3期6365-6380,共16页
The task of automatically analyzing sentiments from a tweet has more use now than ever due to the spectrum of emotions expressed from national leaders to the average man.Analyzing this data can be critical for any org... The task of automatically analyzing sentiments from a tweet has more use now than ever due to the spectrum of emotions expressed from national leaders to the average man.Analyzing this data can be critical for any organization.Sentiments are often expressed with different intensity and topics which can provide great insight into how something affects society.Sentiment analysis in Twittermitigates the various issues of analyzing the tweets in terms of views expressed and several approaches have already been proposed for sentiment analysis in twitter.Resources used for analyzing tweet emotions are also briefly presented in literature survey section.In this paper,hybrid combination of different model’s LSTM-CNN have been proposed where LSTMis Long Short TermMemory andCNNrepresents ConvolutionalNeural Network.Furthermore,the main contribution of our work is to compare various deep learning and machine learning models and categorization based on the techniques used.The main drawback of LSTM is that it’s a timeconsuming process whereas CNN do not express content information in an accurate way,thus our proposed hybrid technique improves the precision rate and helps in achieving better results.Initial step of our mentioned technique is to preprocess the data in order to remove stop words and unnecessary data to improve the efficiency in terms of time and accuracy also it shows optimal results when it is compared with predefined approaches. 展开更多
关键词 Meta level features lexical mistakes sentiment analysis count vector natural language processing deep learning machine learning naive bayes
下载PDF
Assessment of Sentiment Analysis Using Information Gain Based Feature Selection Approach
4
作者 R.Madhumathi A.Meena Kowshalya R.Shruthi 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期849-860,共12页
Sentiment analysis is the process of determining the intention or emotion behind an article.The subjective information from the context is analyzed by the sentimental analysis of the people’s opinion.The data that is... Sentiment analysis is the process of determining the intention or emotion behind an article.The subjective information from the context is analyzed by the sentimental analysis of the people’s opinion.The data that is analyzed quantifies the reactions or sentiments and reveals the information’s contextual polarity.In social behavior,sentiment can be thought of as a latent variable.Measuring and comprehending this behavior could help us to better understand the social issues.Because sentiments are domain specific,sentimental analysis in a specific context is critical in any real-world scenario.Textual sentiment analysis is done in sentence,document level and feature levels.This work introduces a new Information Gain based Feature Selection(IGbFS)algorithm for selecting highly correlated features eliminating irrelevant and redundant ones.Extensive textual sentiment analysis on sentence,document and feature levels are performed by exploiting the proposed Information Gain based Feature Selection algorithm.The analysis is done based on the datasets from Cornell and Kaggle repositories.When compared to existing baseline classifiers,the suggested Information Gain based classifier resulted in an increased accuracy of 96%for document,97.4%for sentence and 98.5%for feature levels respectively.Also,the proposed method is tested with IMDB,Yelp 2013 and Yelp 2014 datasets.Experimental results for these high dimensional datasets give increased accuracy of 95%,96%and 98%for the proposed Information Gain based classifier for document,sentence and feature levels respectively compared to existing baseline classifiers. 展开更多
关键词 Sentiment analysis sentence level document level feature level information gain
下载PDF
Analysis of color distortion and optimum fusion for remote sensing images using the statistical property of wavelet decomposition
5
作者 肖刚 Wang Shu 《High Technology Letters》 EI CAS 2006年第4期397-402,共6页
IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A stud... IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A study on IHS fusion indicates that the color distortion can't be avoided. Meanwhile, the statistical property of wavelet coefficient with wavelet decomposition reflects those significant features, such as edges, lines and regions. So, a united optimal fusion method, which uses the statistical property and IHS transform on pixel and feature levels, is proposed. That is, the high frequency of intensity component Ⅰ is fused on feature level with multi-resolution wavelet in IHS space. And the low frequency of intensity component Ⅰ is fused on pixel level with optimal weight coefficients. Spectral information and spatial resolution are two performance indexes of optimal weight coefficients. Experiment results with QuickBird data of Shanghai show that it is a practical and effective method. 展开更多
关键词 color distortion multi-resolution wavelet remote sensing images IHS fusion statistieal property optimal fusion feature level pixel level
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部