It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synch...It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synchronization can be found in an excitatory/inhibitory (E/I) neuronal network with medium synaptie delay and high level of heterogeneity, which often occurs in real neuronal networks. Two effects of post-synaptic potentials (PSP) to network synchronization are presented, and the synaptic contribution of excitatory and inhibitory neurons to robust synchronization in this E/I network is investigated. It is found that both excitatory and inhibitory neurons may contribute to robust synchronization in E/I networks, especially the excitatory PSP has a more positive effect on synchronization in E/I networks than that in excitatory networks. This may explain the strong robustness of synchronization in Eli neuronal networks.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11102038,11472061,70971021,71371046and 61203325the Shanghai Natural Science Foundation under Grant No 13ZR1400200+1 种基金the Undergraduate Education Key Reform Project of Shanghai Universities under Grant No X12071306the Fundamental Research Funds for the Central Universities at Donghua University under Grant Nos 14D110402,2232013D3-39 and 14D110417
文摘It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synchronization can be found in an excitatory/inhibitory (E/I) neuronal network with medium synaptie delay and high level of heterogeneity, which often occurs in real neuronal networks. Two effects of post-synaptic potentials (PSP) to network synchronization are presented, and the synaptic contribution of excitatory and inhibitory neurons to robust synchronization in this E/I network is investigated. It is found that both excitatory and inhibitory neurons may contribute to robust synchronization in E/I networks, especially the excitatory PSP has a more positive effect on synchronization in E/I networks than that in excitatory networks. This may explain the strong robustness of synchronization in Eli neuronal networks.