By analyzing the results of compliance minimization of thermoelastic structures,we observed that microstructures play an important role in this optimization problem.Then,we propose to use a multiple variable cutting(M...By analyzing the results of compliance minimization of thermoelastic structures,we observed that microstructures play an important role in this optimization problem.Then,we propose to use a multiple variable cutting(M-VCUT)level set-based model of microstructures to solve the concurrent two-scale topology optimization of thermoelastic structures.A microstructure is obtained by combining multiple virtual microstructures that are derived respectively from multiple microstructure prototypes,thus giving more diversity of microstructure and more flexibility in design optimization.The effective mechanical properties of microstructures are computed in an off-line phase by using the homogenization method,and then a mapping relationship between the design variables and the effective properties is established,which gives a data-driven model of microstructure.In the online phase,the data-driven model is used in the finite element analysis to improve the computational efficiency.The compliance minimization problem is considered,and the results of numerical examples prove that the proposed method is effective.展开更多
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid s...Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method,where the shape and cross section(including thickness and width)of the stiffeners can be optimized simultaneously.The grid stiffeners are a combination ofmany single stiffenerswhich are projected by the corresponding level set functions.The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level set function.Besides,the path of each single stiffener is described by the zero iso-contour of the level set function.All the single stiffeners are combined together by using the p-norm method to obtain the stiffener grid.The proposed method is validated by several numerical examples to optimize the critical buckling load factor.展开更多
BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations ...BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Ma...The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12272144).
文摘By analyzing the results of compliance minimization of thermoelastic structures,we observed that microstructures play an important role in this optimization problem.Then,we propose to use a multiple variable cutting(M-VCUT)level set-based model of microstructures to solve the concurrent two-scale topology optimization of thermoelastic structures.A microstructure is obtained by combining multiple virtual microstructures that are derived respectively from multiple microstructure prototypes,thus giving more diversity of microstructure and more flexibility in design optimization.The effective mechanical properties of microstructures are computed in an off-line phase by using the homogenization method,and then a mapping relationship between the design variables and the effective properties is established,which gives a data-driven model of microstructure.In the online phase,the data-driven model is used in the finite element analysis to improve the computational efficiency.The compliance minimization problem is considered,and the results of numerical examples prove that the proposed method is effective.
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
基金supported by the National Natural Science Foundation of China(Grant Nos.51975227 and 12272144).
文摘Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method,where the shape and cross section(including thickness and width)of the stiffeners can be optimized simultaneously.The grid stiffeners are a combination ofmany single stiffenerswhich are projected by the corresponding level set functions.The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level set function.Besides,the path of each single stiffener is described by the zero iso-contour of the level set function.All the single stiffeners are combined together by using the p-norm method to obtain the stiffener grid.The proposed method is validated by several numerical examples to optimize the critical buckling load factor.
基金National Natural Science Foundation of China,No.72101236China Postdoctoral Science Foundation,No.2022M722900+1 种基金Collaborative Innovation Project of Zhengzhou City,No.XTCX2023006Nursing Team Project of the First Affiliated Hospital of Zhengzhou University,No.HLKY2023005.
文摘BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.