期刊文献+
共找到6,388篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Simulation of Surrounding Rock Deformation and Grouting Reinforcement of Cross-Fault Tunnel under Different Excavation Methods
1
作者 Duan Zhu Zhende Zhu +2 位作者 Cong Zhang LunDai Baotian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2445-2470,共26页
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a... Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels. 展开更多
关键词 Cross-fault tunnel finite element analysis excavation methods surrounding rock deformation grouting reinforcement
下载PDF
A dynamic large-deformation particle finite element method for geotechnical applications based on Abaqus
2
作者 Weihai Yuan Jinxin Zhu +4 位作者 Neng Wang Wei Zhang Beibing Dai Yuanjun Jiang Yuan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1859-1871,共13页
In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avo... In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avoid mesh distortion.Additional mesh smoothing and boundary node smoothing techniques are incorporated to improve the mesh quality and solution accuracy.The field variables are mapped from the old to the new mesh using the closest point projection method to minimize the mapping error.The procedures of the proposed Abaqus-based dynamic PFEM(Abaqus-DPFEM)analysis and its implementation in Abaqus are detailed.The accuracy and robustness of the proposed approach are examined via four illustrative numerical examples.The numerical results show a satisfactory agreement with published results and further confirm the applicability of the Abaqus-DPFEM to solving dynamic large-deformation problems in geotechnical engineering. 展开更多
关键词 ABAQUS Collapse of granular materials DYNAMICS Large deformation Particle finite element method(PFEM) Rigid strip footing
下载PDF
Performance analysis of empirical models for predicting rock mass deformation modulus using regression and Bayesian methods 被引量:1
3
作者 Adeyemi Emman Aladejare Musa Adebayo Idris 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1263-1271,共9页
Deformation modulus of rock mass is one of the input parameters to most rock engineering designs and constructions.The field tests for determination of deformation modulus are cumbersome,expensive and time-consuming.T... Deformation modulus of rock mass is one of the input parameters to most rock engineering designs and constructions.The field tests for determination of deformation modulus are cumbersome,expensive and time-consuming.This has prompted the development of various regression equations to estimate deformation modulus from results of rock mass classifications,with rock mass rating(RMR)being one of the frequently used classifications.The regression equations are of different types ranging from linear to nonlinear functions like power and exponential.Bayesian method has recently been developed to incorporate regression equations into a Bayesian framework to provide better estimates of geotechnical properties.The question of whether Bayesian method improves the estimation of geotechnical properties in all circumstances remains open.Therefore,a comparative study was conducted to assess the performances of regression and Bayesian methods when they are used to characterize deformation modulus from the same set of RMR data obtained from two project sites.The study also investigated the performance of different types of regression equations in estimation of the deformation modulus.Statistics,probability distributions and prediction indicators were used to assess the performances of regression and Bayesian methods and different types of regression equations.It was found that power and exponential types of regression equations provide a better estimate than linear regression equations.In addition,it was discovered that the ability of the Bayesian method to provide better estimates of deformation modulus than regression method depends on the quality and quantity of input data as well as the type of the regression equation. 展开更多
关键词 deformation modulus Rock mass Regression equation Bayesian method Performance analysis Rock mass rating(RMR)
下载PDF
Plastic Deformation of Nano-TiO_2 Ceramics Prepared by Different Methods 被引量:1
4
作者 Zuolin CUI(Research Center of Nanostructure Materials, Qingdao Institute of Chemical Technology, 266042 Qingdao, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第1期71-74,共4页
The comparative study of the tensile plastic deformation of nano(n)-TiO2 ceramic prepared byphysical gas condensation (P) and chemical hydrolysis precipitation (C) methods was conductedby a gas pressure forming techni... The comparative study of the tensile plastic deformation of nano(n)-TiO2 ceramic prepared byphysical gas condensation (P) and chemical hydrolysis precipitation (C) methods was conductedby a gas pressure forming technique at 750~800℃. The results show that n-TiO2 (P) possessesexcellent property of tensile pIastic deformation comparing with n-TiO2(C). The reason for thisis attributed to the surface cleanness and soft agglomeration of n-TiO2 (P) particfe prepared inreIatively cIean vacuum condition. 展开更多
关键词 TiO Nano Plastic deformation of Nano-TiO2 Ceramics Prepared by Different methods
下载PDF
Nonlinear coupling modeling and dynamics analysis of rotating flexible beams with stretching deformation effect 被引量:2
5
作者 Xiaokang DU Yuanzhao CHEN +3 位作者 Jing ZHANG Xian GUO Liang LI Dingguo ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期125-140,共16页
Dynamic coupling modeling and analysis of rotating beams based on the nonlinear Green-Lagrangian strain are introduced in this work.With the reservation of the axial nonlinear strain,there are more coupling terms for ... Dynamic coupling modeling and analysis of rotating beams based on the nonlinear Green-Lagrangian strain are introduced in this work.With the reservation of the axial nonlinear strain,there are more coupling terms for axial and transverse deformations.The discretized dynamic governing equations are obtained by using the finite element method and Lagrange’s equations of the second kind.Time responses are conducted to compare the proposed model with other previous models.The stretching deformation due to rotating motion is observed and calculated by special formulations under dynamic equilibrium.The stretching deformation and the change of the associated equilibrium position are taken into account to analyze the free vibration and frequency response of the rotating beams.Analytical and numerical comparisons show that the proposed model can provide reliable results,while the previous models may lead to imprecise results,especially in high-speed conditions. 展开更多
关键词 rotating beam finite element method stiffening effect stretching deformation dynamic equilibrium
下载PDF
Long-term deformation analysis of Shuibuya concrete face rockfill dam based on response surface method and improved genetic algorithm 被引量:12
6
作者 Fu-hai Yao Shao-heng Guan +4 位作者 He Yang Yuan Chen Huan-feng Qiu Gang Ma Qi-wen Liu 《Water Science and Engineering》 EI CAS CSCD 2019年第3期196-204,共9页
Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained fr... Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM. 展开更多
关键词 SHUIBUYA ROCKFILL DAM Parameter BACK analysis Response surface method Duncan EB model TIME-DEPENDENT deformation
下载PDF
FORMULATIONS OF THE THREE-DIMENSIONAL DISCONTINUOUS DEFORMATION ANALYSIS METHOD 被引量:7
7
作者 刘君 孙宪京 林皋 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第3期270-282,共13页
This paper extends the original 2D discontinuous deformation analysis(DDA)method proposed by Shi to 3D cases,and presents the formulations of the 3D DDA.The formulations maintain the characteristics of the original 2D... This paper extends the original 2D discontinuous deformation analysis(DDA)method proposed by Shi to 3D cases,and presents the formulations of the 3D DDA.The formulations maintain the characteristics of the original 2D DDA approach.Contacts between the blocks are detected by using Common-Plane (C-P) approach and the non-smooth contact,such as of vertex-to-vertex,vertex- to-edge and edge-to-edge types,can be handled easily based on the C-P method.The matrices of equilibrium equations have been given in detail for programming purposes.The C program codes for the 3D DDA are developed.The ability and accuracy of the formulations and the program are verified by the analytical solutions of several dynamic examples.The robustness and versatility of the algorithms presented in this paper are demonstrated with the aid of an example of scattering of densely packed cubes.Finally,implications and future extensions are discussed. 展开更多
关键词 numerical method discontinuous deformation analysis block system CONTACT ROCK
下载PDF
Compensation excavation method control for large deformation disaster of mountain soft rock tunnel 被引量:19
8
作者 Manchao He Qiru Sui +2 位作者 Mengnan Li Zhijiao Wang Zhigang Tao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期951-963,共13页
In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the lar... In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the large deformation problems imposed by complex geological conditions of mountain soft rock tunneling.Hence,the compensation excavation method has been proposed to solve this issue under the consideration that all damage in tunneling originates from the excavation.It uses supportive strategies to counteract the excavation effects successfully.This paper provides an overview of the fundamental ideas of the compensation excavation method,methodologies,and field applications.The scientific validity and feasibility of the compensation excavation method were investigated through the practical engineering study of the Muzhailing and Changning tunnels. 展开更多
关键词 Tunnel engineering Excavation method Soft rock Large deformation Compensation excavation method
下载PDF
Numerical simulation of the welding deformation for the side sill of the bogie frame based on local-global method 被引量:13
9
作者 杨鑫华 王春生 +2 位作者 常力 李娅娜 兆文忠 《China Welding》 EI CAS 2007年第4期11-16,共6页
Considering the limitation of computational capacity, a new finite element solution is used to simulate the welding deformation of the side sill of railroad car' s bogie frame based on the local-global method. Firstl... Considering the limitation of computational capacity, a new finite element solution is used to simulate the welding deformation of the side sill of railroad car' s bogie frame based on the local-global method. Firstly, a volumetric heat source defined by a double ellipsoid is adopted to simulate the thermal distributions of the arc welding process. And then, the local models extracted from the global model are computed with refined meshes. On these bases, the global distortions of the subject studied are ascertained by transferring the inner forces of computed local models to the global model. It indicates that the local-global method is feasible for simulating the large welded structures by comparing the computed results with the corresponding actual measured values. The work provides basis for optimizing the welding sequence and clamping conditions, and has theoretical values and engineering significance in the integral design, manufacturing technique selection of the bogie frame, as well as other kinds of large welded structures. 展开更多
关键词 welding deformation numerical simulation local-global method
下载PDF
Material point method simulation of hydro-mechanical behaviour in twophase porous geomaterials: A state-of-the-art review 被引量:2
10
作者 Xiangcou Zheng Shuying Wang +1 位作者 Feng Yang Junsheng Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2341-2350,共10页
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat... The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers. 展开更多
关键词 Coupled problems Hydro-mechanical behaviour Large deformation Material Point method(MPM)
下载PDF
Stream Surface Strip Element Method and Simulation of Three-Dimensional Deformation of Continuous Hot Rolled Strip 被引量:5
11
作者 LIU Hong-min WANG Ying-rui 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2004年第2期18-24,共7页
A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream su... A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process. 展开更多
关键词 HOT-ROLLING STRIP PLATE three-dimensional deformation stream surface strip element method unit rolling pressure friction stress tension stress
下载PDF
Texture evolution and inhomogeneous deformation of polycrystalline Cu based on crystal plasticity finite element method and particle swarm optimization algorithm 被引量:2
12
作者 HU Li JIANG Shu-yong +2 位作者 ZHANG Yan-qiu ZHU Xiao-ming SUN Dong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2747-2756,共10页
Texture evolution and inhomogeneous deformation of polycrystalline Cu during uniaxial compression are investigated at the grain scale by combining crystal plasticity finite element method(CPFEM) with particle swarm op... Texture evolution and inhomogeneous deformation of polycrystalline Cu during uniaxial compression are investigated at the grain scale by combining crystal plasticity finite element method(CPFEM) with particle swarm optimization(PSO) algorithm. The texture-based representative volume element(TBRVE) is used in the crystal plasticity finite element model, where a given number of crystallographic orientations are obtained by means of discretizing the orientation distribution function(ODF) based on electron backscattered diffraction(EBSD) experiment data. Three-dimensional grains with different morphologies are generated on the basis of Voronoi tessellation. The PSO algorithm plays a significant role in identifying the material parameters and saving computational time. The macroscopic stress–strain curve is predicted based on CPFEM, where the simulation results are in good agreement with the experimental ones. Therefore, CPFEM is a powerful candidate for capturing the texture evolution and clarifying the inhomogeneous plastic deformation of polycrystalline Cu. The simulation results indicate that the <110> fiber texture is generated finally with the progression of plastic deformation. The inhomogeneous distribution of rotation angles lays the foundation for the inhomogeneous deformation of polycrystalline Cu in terms of grain scale. 展开更多
关键词 PLASTIC deformation crystal PLASTICITY FINITE element method TEXTURE evolution
下载PDF
DEFORMATION ANALYSIS OF SHEET METAL SINGLE-POINT INCREMENTAL FORMING BY FINITE ELEMENT METHOD SIMULATION 被引量:3
13
作者 MA Linwei MO Jianhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期31-35,共5页
Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation a... Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger. 展开更多
关键词 Sheet metal incremental forming deformation Finite element method(FEM) Numerical simulation
下载PDF
Large deformation analysis of a cantilever beam made of axially functionally graded material by homotopy analysis method 被引量:2
14
作者 Xin LIN Yixin HUANG +1 位作者 Yang ZHAO Tianshu WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第10期1375-1386,共12页
Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the... Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the longitudinal direction according to a power law. Taking the solution of the corresponding homogeneous beam as the initial guess and obtaining a convergence region by adjusting an auxiliary parameter, the analytical expressions for large deformation of the AFG beam are provided. Results obtained by the HAM are compared with those obtained by the finite element method and those in the previous works to verify its validity. Good agreement is observed. A detailed parametric study is carried out. The results show that the axial material variation can greatly change the deformed configuration, which provides an approach to control and manage the deformation of beams. By tailoring the axial material distribution, a desired deformed configuration can be obtained for a specific load. The analytical solution presented herein can be a helpful tool for this procedure. 展开更多
关键词 large deformation BEAM AXIALLY functionally GRADED (AFG) material Euler-Bernoulli BEAM HOMOTOPY ANALYSIS method (HAM)
下载PDF
Longitudinal integral response deformation method for the seismic analysis of a tunnel structure 被引量:4
15
作者 Liu Jingbo Wang Dongyang Bao Xin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第4期887-904,共18页
For the longitudinal seismic response analysis of a tunnel structure under asynchronous earthquake excitations,a longitudinal integral response deformation method classified as a practical approach is proposed in this... For the longitudinal seismic response analysis of a tunnel structure under asynchronous earthquake excitations,a longitudinal integral response deformation method classified as a practical approach is proposed in this paper.The determinations of the structural critical moments when maximal deformations and internal forces in the longitudinal direction occur are deduced as well.When applying the proposed method,the static analysis of the free-field computation model subjected to the least favorable free-field deformation at the tunnel buried depth is performed first to calculate the equivalent input seismic loads.Then,the equivalent input seismic loads are imposed on the integral tunnel-foundation computation model to conduct the static calculation.Afterwards,the critical longitudinal seismic responses of the tunnel are obtained.The applicability of the new method is verified by comparing the seismic responses of a shield tunnel structure in Beijing,determined by the proposed procedure and by a dynamic time-history analysis under a series of obliquely incident out-of-plane and in-plane waves.The results show that the proposed method has a clear concept with high accuracy and simple progress.Meanwhile,this method provides a feasible way to determine the critical moments of the longitudinal seismic responses of a tunnel structure.Therefore,the proposed method can be effectively applied to analyze the seismic response of a long-line underground structure subjected to non-uniform excitations. 展开更多
关键词 underground tunnel longitudinal integral response deformation method asynchronous seismic excitation critical moment
下载PDF
Thermoelastic Analysis of Non-uniform Pressurized Functionally Graded Cylinder with Variable Thickness Using First Order Shear Deformation Theory(FSDT) and Perturbation Method 被引量:1
16
作者 KHOSHGOFTAR M J MIRZAALI M J RAHIMI G H 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1149-1156,共8页
Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs... Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material. 展开更多
关键词 non-homogenous cylinder First order Shear deformation Theory matched asymptotic method perturbation method functionally graded material
下载PDF
Caution to Apply Magnetic Barkhausen Noise Method to Nondestructive Evaluation of Plastic Deformation in Some Ferromagnetic Materials 被引量:1
17
作者 Manru He Takanori Matsumoto +4 位作者 Tetsuya Uchimoto Toshiyuki Takagi Hongen Chen Shejuan Xie Zhenmao Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期85-91,共7页
Magnetic Barkhausen Noise(MBN) method is known as an effective nondestructive evaluation(NDE) method for evaluation of residual stress in ferromagnetic materials. Some studies on the feasibility of the MBN method for ... Magnetic Barkhausen Noise(MBN) method is known as an effective nondestructive evaluation(NDE) method for evaluation of residual stress in ferromagnetic materials. Some studies on the feasibility of the MBN method for NDE of residual strains were also conducted and found applicable. However, these studies are mainly focused on the state of residual strains which were introduced through a one-cycle-loading process. In practice, however, structures may suffer from an unpredictable and complicated loading history, i.e., the final state of plastic strain may be induced by several times of large loads. Whether the loading history has influences on MBN signals or not is of great importance for the practical application of the MBN method. In this paper, several ferromagnetic specimens with the same final state of residual strain but of different loading history were fabricated and inspected by using a MBN testing system. The experimental results reveal that the loading history has a significant influence on the detected MBN signals especially for a residual strain in range less than 1%, which doubts the feasibility to apply the MBN method simply in the practical environment. In addition, micro-observations on the magnetic domain structures of the plastic damaged specimens were also carried out to clarify the influence mechanism of loading history on the MBN signals. 展开更多
关键词 Plastic damage deformation history MBN method Ferromagnetic materials
下载PDF
DIFFERENTIAL QUADRATURE METHOD FOR BENDING OF ORTHOTROPIC PLATES WITH FINITE DEFORMATION AND TRANSVERSE SHEAR EFFECTS 被引量:1
18
作者 李晶晶 程昌钧 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第8期878-886,共9页
Based on the Reddy's theory of plates with the effect of higher-order shear deformations, the governing equations for bending of orthotropic plates with finite deformations were established. The differential quadr... Based on the Reddy's theory of plates with the effect of higher-order shear deformations, the governing equations for bending of orthotropic plates with finite deformations were established. The differential quadrature (DQ) method of nonlinear analysis to the problem was presented. New DQ approach, presented by Wang and Bert (DQWB), is extended to handle the multiple boundary conditions of plates. The techniques were also further extended to simplify nonlinear computations. The numerical convergence and comparison of solutions were studied. The results show that the DQ method presented is very reliable and valid. Moreover, the influences of geometric and material parameters as well as the transverse shear deformations on nonlinear bending were investigated. Numerical results show the influence of the shear deformation on the static bending of orthotropic moderately thick plate is significant. 展开更多
关键词 higher-order transverse shear deformation finite deformation differential quadrature method DQWB approach convergence and comparison study of solution
下载PDF
Large deformation simulations of geomaterials using moving particle semi-implicit method 被引量:1
19
作者 Shintaro Nohara Hiroshi Suenaga Kunihiko Nakamura 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第6期1122-1132,共11页
Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian g... Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian gridless particle method, and investigated its performance and stability to simulate large deformation of geomaterials. A calculation method was developed using geomaterials modeled as Bingham fluids to improve the original MPS method and enhance its stability. Two numerical tests showed that results from the improved MPS method was in good agreement with the theoretical value.Furthermore, numerical simulations were calibrated by laboratory experiments. It showed that the simulation results matched well with the experimentally observed free-surface configurations for flowing sand. In addition, the model could generally predict the time-history of the impact force. The MPS method could be a useful tool to evaluate large deformation of geomaterials. 展开更多
关键词 Particle method Moving particle semi-implicit(MPS) method Large deformation analysis GEOMATERIALS Bingham model
下载PDF
Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method 被引量:2
20
作者 Jia Jinlong Zhao Yue +2 位作者 Dong Mingye Wu Aiping Li Quan 《China Welding》 EI CAS 2020年第2期1-8,共8页
Wire arc additive manufacture(WAAM) is a new technique to fabricate large-scale complex aluminum alloy components.However, the performance of the parts is critically influenced by residual stresses and deformation. A ... Wire arc additive manufacture(WAAM) is a new technique to fabricate large-scale complex aluminum alloy components.However, the performance of the parts is critically influenced by residual stresses and deformation. A sequentially thermal-mechanical coupled model of residual stress and deformation for aluminum alloy WAAM parts was established based on commercial FE software ABAQUS. The temperature field was calculated by the moving heat source(MHS) method. The temperature function was obtained according to the distribution of the peak temperature. Furthermore, the MHS method and segmented temperature function(STF) method were used to calculate the residual stress and deformation. The results show that the STF method satisfies both the efficiency and accuracy requirements. 1-segment, 3-segment, and 5-segment STF methods can shorten the time for mechanical analysis by 91%, 79%, 63%, respectively.The error of the residual stress and deformation are all less than 20%. STF method provides an effective way to predict the residual stress and deformation of large-scale WAAM parts. 展开更多
关键词 wire ARC ADDITIVE MANUFACTURE numerical simulation RESIDUAL stress and deformation TEMPERATURE function method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部