This paper studies the vibration absorber for a fluid-conveying pipe,where the lever-type nonlinear energy sink(LNES)and spring supports are coupled to the asymmetric ends of the system.The pseudo-arc-length method in...This paper studies the vibration absorber for a fluid-conveying pipe,where the lever-type nonlinear energy sink(LNES)and spring supports are coupled to the asymmetric ends of the system.The pseudo-arc-length method integrated with the harmonic balance method is used to investigate the steady-state responses analytically.Meanwhile,the numerical solution of the fluid-conveying pipe is calculated with the Runge-Kutta method.Moreover,a special response,called the collapsible closed detached response(CCDR),is first observed when the vibration response of mechanical structures is studied.Then,the relationship between the CCDR and the main structure primary response(PR)is obtained.In addition,the closed detached response(CDR)is also observed to research the resonance response of the fluid-conveying pipe.The appearance of either the CCDR or the CDR does affect the resonance attenuation.Furthermore,the mentioned two phenomena underline that the trend of vibration responses under external excitation goes continuous and gradual.Besides,the main advantage of the LNES is presented by contrasting the LNES with the nonlinear energy sink(NES)coupled to the same pipe system.It is found that the LNES can reduce the resonance response amplitude by 91.33%.展开更多
To overcome defects caused by the complex structure and unstable damping performance of the wedge- type damper, a new lever-type friction damper has been developed for use in freight bogies; the design allows the adva...To overcome defects caused by the complex structure and unstable damping performance of the wedge- type damper, a new lever-type friction damper has been developed for use in freight bogies; the design allows the advantages of traditional three-piece bogies to be retained. A detailed description of the structure and mechanism of the lever-type damper is provided, followed by a stress analysis using the finite element method. Dynamic per- formance characteristics of the lever-type damper and the wedge-type damper are compared in terms of the nonlinear critical speed, riding index, and curve negotiation. The results indicate that the maximum stress of the lever remains below its yield limit. The lever-type car has higher running performance reliability, and achieves similar nonlinear critical speed, riding index, and curve negotiation when compared with the wedge-type car.展开更多
A novel metamaterial plate with subwavelength lever-type resonators is proposed to obtain low frequency broadband band gaps and good sound insulation performance.The band structure is theoretically derived,and the val...A novel metamaterial plate with subwavelength lever-type resonators is proposed to obtain low frequency broadband band gaps and good sound insulation performance.The band structure is theoretically derived,and the validity of the theoretical method is verified by the finite element method.The formation mechanisms of the band gaps are illustrated by the analysis of the effective dynamic mass density and group velocity.The effect of the lever ratio on the band gaps is analyzed.The results indicate that as the lever ratio increases,the first band gap shifts to lower frequencies,while the bandwidth is widened.Moreover,the sound insulation performance of the proposed metamaterial plate is evaluated via examining the sound transmission loss(STL).Compared with the metamaterial plates without lever accessories,the proposed metamaterial plates with a suitable lever ratio have better sound insulation performance at low frequencies.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos.11902203 and 12022213)the General Scientific Research Foundation of Liaoning Educational Committee (No.JYT2020035)。
文摘This paper studies the vibration absorber for a fluid-conveying pipe,where the lever-type nonlinear energy sink(LNES)and spring supports are coupled to the asymmetric ends of the system.The pseudo-arc-length method integrated with the harmonic balance method is used to investigate the steady-state responses analytically.Meanwhile,the numerical solution of the fluid-conveying pipe is calculated with the Runge-Kutta method.Moreover,a special response,called the collapsible closed detached response(CCDR),is first observed when the vibration response of mechanical structures is studied.Then,the relationship between the CCDR and the main structure primary response(PR)is obtained.In addition,the closed detached response(CDR)is also observed to research the resonance response of the fluid-conveying pipe.The appearance of either the CCDR or the CDR does affect the resonance attenuation.Furthermore,the mentioned two phenomena underline that the trend of vibration responses under external excitation goes continuous and gradual.Besides,the main advantage of the LNES is presented by contrasting the LNES with the nonlinear energy sink(NES)coupled to the same pipe system.It is found that the LNES can reduce the resonance response amplitude by 91.33%.
文摘To overcome defects caused by the complex structure and unstable damping performance of the wedge- type damper, a new lever-type friction damper has been developed for use in freight bogies; the design allows the advantages of traditional three-piece bogies to be retained. A detailed description of the structure and mechanism of the lever-type damper is provided, followed by a stress analysis using the finite element method. Dynamic per- formance characteristics of the lever-type damper and the wedge-type damper are compared in terms of the nonlinear critical speed, riding index, and curve negotiation. The results indicate that the maximum stress of the lever remains below its yield limit. The lever-type car has higher running performance reliability, and achieves similar nonlinear critical speed, riding index, and curve negotiation when compared with the wedge-type car.
基金Project supported by the National Natural Science Foundation of China(No.11972050)。
文摘A novel metamaterial plate with subwavelength lever-type resonators is proposed to obtain low frequency broadband band gaps and good sound insulation performance.The band structure is theoretically derived,and the validity of the theoretical method is verified by the finite element method.The formation mechanisms of the band gaps are illustrated by the analysis of the effective dynamic mass density and group velocity.The effect of the lever ratio on the band gaps is analyzed.The results indicate that as the lever ratio increases,the first band gap shifts to lower frequencies,while the bandwidth is widened.Moreover,the sound insulation performance of the proposed metamaterial plate is evaluated via examining the sound transmission loss(STL).Compared with the metamaterial plates without lever accessories,the proposed metamaterial plates with a suitable lever ratio have better sound insulation performance at low frequencies.