By constructing Liapunov functions and building a new inequality, we obtain two kinds of sufficient conditions for the existence and global exponential stability of almost periodic solution for a Hopfield-type neural ...By constructing Liapunov functions and building a new inequality, we obtain two kinds of sufficient conditions for the existence and global exponential stability of almost periodic solution for a Hopfield-type neural networks subject to almost periodic external stimuli. Irt this paper, we assume that the network parameters vary almost periodically with time and we incorporate variable delays in the processing part of the network architectures.展开更多
This paper considers two differential infectivity(DI) epidemic models with a nonlinear incidence rate and constant or varying population size. The models exhibits two equilibria, namely., a disease-free equilibrium ...This paper considers two differential infectivity(DI) epidemic models with a nonlinear incidence rate and constant or varying population size. The models exhibits two equilibria, namely., a disease-free equilibrium O and a unique endemic equilibrium. If the basic reproductive number σ is below unity,O is globally stable and the disease always dies out. If σ〉1, O is unstable and the sufficient conditions for global stability of endemic equilibrium are derived. Moreover,when σ〈 1 ,the local or global asymptotical stability of endemic equilibrium for DI model with constant population size in n-dimensional or two-dimensional space is obtained.展开更多
It is well known,that in the theory of stability in differential equations,Liapunov's second method may be the most important The center problem of Liapunov's second method is construction of Liapunov function...It is well known,that in the theory of stability in differential equations,Liapunov's second method may be the most important The center problem of Liapunov's second method is construction of Liapunov function for concrete problems.Beyond any doubt,construction of Liapunov functions is an art.In the case of functional differential equations,there were also many attempts to establish various kinds of Liapunov type theorems.Recently Burton[2]presented an excellent theorem using the Liapunov functional to solve the asymptotic stability of functional differential equation with bounded delay. However,the construction of such a Liapunov functional is still very hard for concrete problems. In this paper, by utilizing this theorem due to Burton,we construct concrete Liapunov functional for certain and nonlinear delay differential equations and derive new sufficient conditions for asymptotic stability.Those criteria improve the result of literature[1]and they are with simple forms,easily checked and applicable.展开更多
For the infinite delay difference equations of the general form, two new uniform asymptotic stability criteria are established in terms of the discrete Liapunov functionals.
基金The Soft Project (B30145) of Science and Technology of Hunan Province.
文摘By constructing Liapunov functions and building a new inequality, we obtain two kinds of sufficient conditions for the existence and global exponential stability of almost periodic solution for a Hopfield-type neural networks subject to almost periodic external stimuli. Irt this paper, we assume that the network parameters vary almost periodically with time and we incorporate variable delays in the processing part of the network architectures.
文摘This paper considers two differential infectivity(DI) epidemic models with a nonlinear incidence rate and constant or varying population size. The models exhibits two equilibria, namely., a disease-free equilibrium O and a unique endemic equilibrium. If the basic reproductive number σ is below unity,O is globally stable and the disease always dies out. If σ〉1, O is unstable and the sufficient conditions for global stability of endemic equilibrium are derived. Moreover,when σ〈 1 ,the local or global asymptotical stability of endemic equilibrium for DI model with constant population size in n-dimensional or two-dimensional space is obtained.
基金This project is supported by the National Natural Science Foundation of China
文摘It is well known,that in the theory of stability in differential equations,Liapunov's second method may be the most important The center problem of Liapunov's second method is construction of Liapunov function for concrete problems.Beyond any doubt,construction of Liapunov functions is an art.In the case of functional differential equations,there were also many attempts to establish various kinds of Liapunov type theorems.Recently Burton[2]presented an excellent theorem using the Liapunov functional to solve the asymptotic stability of functional differential equation with bounded delay. However,the construction of such a Liapunov functional is still very hard for concrete problems. In this paper, by utilizing this theorem due to Burton,we construct concrete Liapunov functional for certain and nonlinear delay differential equations and derive new sufficient conditions for asymptotic stability.Those criteria improve the result of literature[1]and they are with simple forms,easily checked and applicable.
基金Project supported by the National Natural Science Foundation of China (No. 19831030).
文摘For the infinite delay difference equations of the general form, two new uniform asymptotic stability criteria are established in terms of the discrete Liapunov functionals.