Molecular reconstruction is a rapid and reliable way to provide molecular detail of petroleum fractions,which is required in the kinetic modeling of petroleum conversation processes at the molecular level.In the typic...Molecular reconstruction is a rapid and reliable way to provide molecular detail of petroleum fractions,which is required in the kinetic modeling of petroleum conversation processes at the molecular level.In the typical stochastic reconstruction method,the estimation of properties of pseudo molecules that are generated by Monte Carlo sampling depends on the building of predefined molecular libraries,which is expensive and inaccessible for certain petroleum fractions.In this paper,a novel stochastic reconstruction strategy is proposed,which is based on a stratified library of structural descriptors.Properties of pseudo molecules generated in the novel strategy can be directly estimated by group contribution method in the condition of lacking predefined molecular libraries.In this strategy,the molecular building diagram comprises two steps.First,the ring structure is configured by determining the number of rings.Different from the length of chain adopted in the traditional stochastic reconstruction method,in the second step,number of structural descriptors(SDs)for binding site and chain were determined sequentially for the configuration of binding site and saturated acyclic hydrocarbon chain.These structural descriptors for binding site and chain were selected from group contribution methods.To count the number of partial overlapping sections between structural descriptors for chain,two supplementary structural descriptors were created.All possible saturated structures of hydrocarbon chains can be represented by structural descriptors at the scale of property estimation.This strategy separates the building of a predefined molecule library from the stochastic reconstruction process.The exact structures of pseudo molecules represented by structural descriptors in this work can be determined with sufficient chemical knowledge.Fifty naphtha samples are tested independently to demonstrate the performance of the proposed strategy and the results show that the estimated properties were close enough to the experimental values.This strategy will benefit the molecular management of petrochemical industries and therefore improve economic and environmental efficiencies.展开更多
In order to evaluate the impact of reclaimed water on the ecology of bacterial communities in the Typha angustifolia L. rhizosphere soil, bacterial community structure was investigated using a combination of terminal ...In order to evaluate the impact of reclaimed water on the ecology of bacterial communities in the Typha angustifolia L. rhizosphere soil, bacterial community structure was investigated using a combination of terminal restriction fragment length polymorphism and 16S rRNA gene clone library. The results revealed significant spatial variation of bacterial communities along the river from upstream and downstream. For example, a higher relative abundance of γ-Proteobacteria, Firmicutes, Chloroflexi and a lower proportion of β-Proteobacteria and ε-Proteobacteria was detected at the downstream site compared to the upstream site. Additionally, with an increase of the reclaimed water interference intensity, the rhizosphere bacterial community showed a decrease in taxon richness, evenness and diversity. The relative abundance of bacteria closely related to the resistant of heavy-metal was markedly increased, while the bacteria related for carbon/nitrogen/phosphorus/sulfur cycling wasn't strikingly changed. Besides that, the pathogenic bacteria markedly increased in the downstream rhizosphere soil since reclaimed water supplement, while the possible plant growth-promoting rhizobacteria obviously reduced in the downstream sediment. Together these data suggest cause and effect between reclaimed water input into the wetland, shift in bacterial communities through habitat change, and alteration of capacity for biogeochemical cycling of contaminants.展开更多
基金the support of International(Regional)Cooperation and Exchange Project(61720106008)National Natural Science Fund for Distinguished Young Scholars(61925305)National Natural Science Foundation of China(61873093)。
文摘Molecular reconstruction is a rapid and reliable way to provide molecular detail of petroleum fractions,which is required in the kinetic modeling of petroleum conversation processes at the molecular level.In the typical stochastic reconstruction method,the estimation of properties of pseudo molecules that are generated by Monte Carlo sampling depends on the building of predefined molecular libraries,which is expensive and inaccessible for certain petroleum fractions.In this paper,a novel stochastic reconstruction strategy is proposed,which is based on a stratified library of structural descriptors.Properties of pseudo molecules generated in the novel strategy can be directly estimated by group contribution method in the condition of lacking predefined molecular libraries.In this strategy,the molecular building diagram comprises two steps.First,the ring structure is configured by determining the number of rings.Different from the length of chain adopted in the traditional stochastic reconstruction method,in the second step,number of structural descriptors(SDs)for binding site and chain were determined sequentially for the configuration of binding site and saturated acyclic hydrocarbon chain.These structural descriptors for binding site and chain were selected from group contribution methods.To count the number of partial overlapping sections between structural descriptors for chain,two supplementary structural descriptors were created.All possible saturated structures of hydrocarbon chains can be represented by structural descriptors at the scale of property estimation.This strategy separates the building of a predefined molecule library from the stochastic reconstruction process.The exact structures of pseudo molecules represented by structural descriptors in this work can be determined with sufficient chemical knowledge.Fifty naphtha samples are tested independently to demonstrate the performance of the proposed strategy and the results show that the estimated properties were close enough to the experimental values.This strategy will benefit the molecular management of petrochemical industries and therefore improve economic and environmental efficiencies.
基金supported by the National Natural Science Foundation of China(No.40901281)the Beijing of Education Science and Technology Program(No.KM201310028012)the International S&T Cooperation Program of China(No.2014DFA21620)
文摘In order to evaluate the impact of reclaimed water on the ecology of bacterial communities in the Typha angustifolia L. rhizosphere soil, bacterial community structure was investigated using a combination of terminal restriction fragment length polymorphism and 16S rRNA gene clone library. The results revealed significant spatial variation of bacterial communities along the river from upstream and downstream. For example, a higher relative abundance of γ-Proteobacteria, Firmicutes, Chloroflexi and a lower proportion of β-Proteobacteria and ε-Proteobacteria was detected at the downstream site compared to the upstream site. Additionally, with an increase of the reclaimed water interference intensity, the rhizosphere bacterial community showed a decrease in taxon richness, evenness and diversity. The relative abundance of bacteria closely related to the resistant of heavy-metal was markedly increased, while the bacteria related for carbon/nitrogen/phosphorus/sulfur cycling wasn't strikingly changed. Besides that, the pathogenic bacteria markedly increased in the downstream rhizosphere soil since reclaimed water supplement, while the possible plant growth-promoting rhizobacteria obviously reduced in the downstream sediment. Together these data suggest cause and effect between reclaimed water input into the wetland, shift in bacterial communities through habitat change, and alteration of capacity for biogeochemical cycling of contaminants.