The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ...The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.展开更多
Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cam...Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cameras plays a vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles.However,manual enforcement by traffic police is time-consuming and labor-intensive.Traditional methods face challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques.This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles,addressing these challenges.The proposedmodel improves uponYOLOv8n by deepening the network structure,incorporating weighted connections,and introducing lightweight convolutional modules.These modifications aim to enhance the precision of small target recognition while reducing the model’s parameters,making it suitable for deployment on low-performance devices in real traffic scenarios.Experimental results demonstrate that the model achieves an mAP@0.5 of 91.8%,showing an 11.5%improvement over the baselinemodel,with a 16.2%reduction in parameters.Additionally,themodel achieves a frames per second(FPS)rate of 58,meeting the accuracy and speed requirements for detection in actual traffic scenarios.展开更多
Nowadays, license plate recognition for parking systems is a critical task to provide automatic control of customers and payment. This paper introduces a new method for automatic recognition of license plates of vehic...Nowadays, license plate recognition for parking systems is a critical task to provide automatic control of customers and payment. This paper introduces a new method for automatic recognition of license plates of vehicles by mathematical morphology. The proposed method can provide the license plate number of the plates in different light conditions, colors, sizes, and inclination (angles). The algorithm can recognize the license plates of European Union vehicles quickly and correctly. The pattern learning of mathematical skeletons has high efficiency in the process. The performance of the algorithm is demonstrated well by the test in a parking control system.展开更多
The license plate recognition system(LPRS)has been widely adopted in daily life due to its efficiency and high accuracy.Deep neural networks are commonly used in the LPRS to improve the recognition accuracy.However,re...The license plate recognition system(LPRS)has been widely adopted in daily life due to its efficiency and high accuracy.Deep neural networks are commonly used in the LPRS to improve the recognition accuracy.However,researchers have found that deep neural networks have their own security problems that may lead to unexpected results.Specifically,they can be easily attacked by the adversarial examples that are generated by adding small perturbations to the original images,resulting in incorrect license plate recognition.There are some classic methods to generate adversarial examples,but they cannot be adopted on LPRS directly.In this paper,we modify some classic methods to generate adversarial examples that could mislead the LPRS.We conduct extensive evaluations on the HyperLPR system and the results show that the system could be easily attacked by such adversarial examples.In addition,we show that the generated images could also attack the black-box systems;we show some examples that the Baidu LPR system also makes incorrect recognitions.We hope this paper could help improve the LPRS by realizing the existence of such adversarial attacks.展开更多
Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless...Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless devices and routes such as radio channels,optical fiber,and blockchain technology.The Internet of Things(IoT)is a network of connected,interconnected gadgets.Privacy issues occasionally arise due to the amount of data generated.However,they have been primarily addressed by blockchain and smart contract technology.While there are still security issues with smart contracts,primarily due to the complexity of writing the code,there are still many challenges to consider when designing blockchain designs for the IoT environment.This study uses traditional blockchain technology with the“You Only Look Once”(YOLO)object detection method to accurately locate and identify license plates.While YOLO and blockchain technologies used for intelligent vehicle license plate recognition are promising,they have received limited research attention.Real-time object identification and recognition would be possible by combining a cutting-edge object detection technique with a regional convolutional neural network(RCNN)built with the tensor flow core open source libraries.This method works reasonably well for identifying any license plate.The Automatic License Plate Recognition(ALPR)approach delivered outstanding results in various datasets.First,with a recognition rate of 96.2%,our system(UFPR-ALPR)surpassed the previously used technology,consisting of 4500 frames and around 150 films.Second,a deep learning algorithm was trained to recognize images of license plate numbers using the UFPR-ALPR dataset.Third,the license plate’s characters were complicated for standard methods to identify because of the shifting lighting correctly.The proposed model,however,produced beneficial outcomes.展开更多
Traditional methods of license character extraction cannot meet the requirements of recognition accuracy and speed rendered by the video vehicular detection system. Therefore, a license plate localization method based...Traditional methods of license character extraction cannot meet the requirements of recognition accuracy and speed rendered by the video vehicular detection system. Therefore, a license plate localization method based on multi-scale edge detection and a character segmentation algorithm based on Markov random field model is presented. Results of experiments demonstrate that the method yields more accurate license character extraction in contrast to traditional localization method based on edge detection by difference operator and character segmentation based on threshold. The accuracy increases from 90% to 94% under preferable illumination, while under poor condition, it increases more than 5%. When the two improved algorithms are used, the accuracy and speed of automatic license recognition meet the system's requirement even under the noisy circumstance or uneven illumination.展开更多
License plate recognition technology use widely in intelligent trafficmanagement and control. Researchers have been committed to improving thespeed and accuracy of license plate recognition for nearly 30 years. This p...License plate recognition technology use widely in intelligent trafficmanagement and control. Researchers have been committed to improving thespeed and accuracy of license plate recognition for nearly 30 years. This paperis the first to propose combining the attention mechanism with YOLO-v5and LPRnet to construct a new license plate recognition model (LPR-CBAMNet).Through the attention mechanism CBAM(Convolutional Block AttentionModule), the importance of different feature channels in license platerecognition can be re-calibrated to obtain proper attention to features. Forceinformation to achieve the purpose of improving recognition speed andaccuracy. Experimental results show that the model construction methodis superior in speed and accuracy to traditional license plate recognitionalgorithms. The accuracy of the recognition model of the CBAM model isincreased by two percentage points to 97.2%, and the size of the constructedmodel is only 1.8 M, which can meet the requirements of real-time executionof embedded low-power devices. The codes for training and evaluating LPRCBAM-Net are available under the open-source MIT License at: https://github.com/To2rk/LPR-CBAM-Net.展开更多
Objective To study the main problems existing in the current licensed pharmacists system in China. Methods The relevant literature was searched, and the differences of licensed pharmacists system at home and abroad we...Objective To study the main problems existing in the current licensed pharmacists system in China. Methods The relevant literature was searched, and the differences of licensed pharmacists system at home and abroad were compared. Results and Conclusion By comparison, it is found that there are obvious differences in the management system, access system and continuing education of licensed pharmacists between China and foreign countries. In order to improve the system of licensed pharmacists in China, the supervision of licensed pharmacists should be strengthened by introducing relevant laws and regulations as soon as possible. Besides, the admittance criteria of licensed pharmacists should be enhanced, and the continuing education system of licensed pharmacists should be optimized as well.展开更多
Accurate and efficient urban traffic flow prediction can help drivers identify road traffic conditions in real-time,consequently helping them avoid congestion and accidents to a certain extent.However,the existing met...Accurate and efficient urban traffic flow prediction can help drivers identify road traffic conditions in real-time,consequently helping them avoid congestion and accidents to a certain extent.However,the existing methods for real-time urban traffic flow prediction focus on improving the model prediction accuracy or efficiency while ignoring the training efficiency,which results in a prediction system that lacks the scalability to integrate real-time traffic flow into the training procedure.To conduct accurate and real-time urban traffic flow prediction while considering the latest historical data and avoiding time-consuming online retraining,herein,we propose a scalable system for Predicting short-term URban traffic flow in real-time based on license Plate recognition data(PURP).First,to ensure prediction accuracy,PURP constructs the spatio-temporal contexts of traffic flow prediction from License Plate Recognition(LPR)data as effective characteristics.Subsequently,to utilize the recent data without retraining the model online,PURP uses the nonparametric method k-Nearest Neighbor(namely KNN)as the prediction framework because the KNN can efficiently identify the top-k most similar spatio-temporal contexts and make predictions based on these contexts without time-consuming model retraining online.The experimental results show that PURP retains strong prediction efficiency as the prediction period increases.展开更多
A novel reconstruction method to improve the recognition of license plate texts of moving vehicles in real traffic videos is proposed, which fuses complimentary information among low resolution (LR) images to yield ...A novel reconstruction method to improve the recognition of license plate texts of moving vehicles in real traffic videos is proposed, which fuses complimentary information among low resolution (LR) images to yield a high resolution (HR) image. Based on the regularization super-resolution (SR) reconstruction schemes, this paper first introduces a residual gradient (RG) term as a new regularization term to improve the quality of the reconstructed image. Moreover, L1 norm is used to measure the residual data (RD) term and the RG term in order to improve the robustness of the proposed method. Finally, the steepest descent method is exploited to solve the energy functional. Simulated and real acquired video sequence experiments show the effectiveness and practicability of the proposed method and demonstrate its superiority over the bi-cubic interpolation and discontinuity adaptive Markov random field (DAMRF) SR method in both signal to noise ratios (SNR) and visual effects.展开更多
Incense in China-Cultural Convergence and Ethnic Integration in the Perspective of Incense.Incense has witnessed the thousands of years of civilization of the Chinese nation,accompanied by the fostering of the Chinese...Incense in China-Cultural Convergence and Ethnic Integration in the Perspective of Incense.Incense has witnessed the thousands of years of civilization of the Chinese nation,accompanied by the fostering of the Chinese cultural spirit and the formation of philosophical thoughts.The cover story is written by Qin Yanchun,a researcher from the Institute of Chinese Culture of the Chinese National Academy of Arts,who tells us the story of various spices such as Liquidambar orientalis from the"Western Regions",and the cultural convergence and ethnic integration of people of different times in the perspective of spices,incense set,incense products and other license materials.展开更多
文摘The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.
基金supported by the Ningxia Key Research and Development Program(Talent Introduction Special Project)Project(2022YCZX0013)North Minzu University 2022 School-Level Scientific Research Platform“Digital Agriculture Enabling Ningxia Rural Revitalization Innovation Team”(2022PT_S10)+1 种基金Yinchuan City University-Enterprise Joint Innovation Project(2022XQZD009)Ningxia Key Research and Development Program(Key Project)Project(2023BDE02001).
文摘Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cameras plays a vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles.However,manual enforcement by traffic police is time-consuming and labor-intensive.Traditional methods face challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques.This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles,addressing these challenges.The proposedmodel improves uponYOLOv8n by deepening the network structure,incorporating weighted connections,and introducing lightweight convolutional modules.These modifications aim to enhance the precision of small target recognition while reducing the model’s parameters,making it suitable for deployment on low-performance devices in real traffic scenarios.Experimental results demonstrate that the model achieves an mAP@0.5 of 91.8%,showing an 11.5%improvement over the baselinemodel,with a 16.2%reduction in parameters.Additionally,themodel achieves a frames per second(FPS)rate of 58,meeting the accuracy and speed requirements for detection in actual traffic scenarios.
基金supported by the University of Alicante Project under Grant No.PPC–1928273/A
文摘Nowadays, license plate recognition for parking systems is a critical task to provide automatic control of customers and payment. This paper introduces a new method for automatic recognition of license plates of vehicles by mathematical morphology. The proposed method can provide the license plate number of the plates in different light conditions, colors, sizes, and inclination (angles). The algorithm can recognize the license plates of European Union vehicles quickly and correctly. The pattern learning of mathematical skeletons has high efficiency in the process. The performance of the algorithm is demonstrated well by the test in a parking control system.
基金This work is supported by the National Natural Science Foundation of China under Grant Nos.U1636215,61902082the Guangdong Key R&D Program of China 2019B010136003National Key R&D Program of China 2019YFB1706003.
文摘The license plate recognition system(LPRS)has been widely adopted in daily life due to its efficiency and high accuracy.Deep neural networks are commonly used in the LPRS to improve the recognition accuracy.However,researchers have found that deep neural networks have their own security problems that may lead to unexpected results.Specifically,they can be easily attacked by the adversarial examples that are generated by adding small perturbations to the original images,resulting in incorrect license plate recognition.There are some classic methods to generate adversarial examples,but they cannot be adopted on LPRS directly.In this paper,we modify some classic methods to generate adversarial examples that could mislead the LPRS.We conduct extensive evaluations on the HyperLPR system and the results show that the system could be easily attacked by such adversarial examples.In addition,we show that the generated images could also attack the black-box systems;we show some examples that the Baidu LPR system also makes incorrect recognitions.We hope this paper could help improve the LPRS by realizing the existence of such adversarial attacks.
基金extend their appreciation to the deanship of scientific research at Shaqra University for funding this research work through the Project Number(SU-ANN-202248).
文摘Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless devices and routes such as radio channels,optical fiber,and blockchain technology.The Internet of Things(IoT)is a network of connected,interconnected gadgets.Privacy issues occasionally arise due to the amount of data generated.However,they have been primarily addressed by blockchain and smart contract technology.While there are still security issues with smart contracts,primarily due to the complexity of writing the code,there are still many challenges to consider when designing blockchain designs for the IoT environment.This study uses traditional blockchain technology with the“You Only Look Once”(YOLO)object detection method to accurately locate and identify license plates.While YOLO and blockchain technologies used for intelligent vehicle license plate recognition are promising,they have received limited research attention.Real-time object identification and recognition would be possible by combining a cutting-edge object detection technique with a regional convolutional neural network(RCNN)built with the tensor flow core open source libraries.This method works reasonably well for identifying any license plate.The Automatic License Plate Recognition(ALPR)approach delivered outstanding results in various datasets.First,with a recognition rate of 96.2%,our system(UFPR-ALPR)surpassed the previously used technology,consisting of 4500 frames and around 150 films.Second,a deep learning algorithm was trained to recognize images of license plate numbers using the UFPR-ALPR dataset.Third,the license plate’s characters were complicated for standard methods to identify because of the shifting lighting correctly.The proposed model,however,produced beneficial outcomes.
基金Supported by Science Development Foundation of Tianjin (No. 033183311) .
文摘Traditional methods of license character extraction cannot meet the requirements of recognition accuracy and speed rendered by the video vehicular detection system. Therefore, a license plate localization method based on multi-scale edge detection and a character segmentation algorithm based on Markov random field model is presented. Results of experiments demonstrate that the method yields more accurate license character extraction in contrast to traditional localization method based on edge detection by difference operator and character segmentation based on threshold. The accuracy increases from 90% to 94% under preferable illumination, while under poor condition, it increases more than 5%. When the two improved algorithms are used, the accuracy and speed of automatic license recognition meet the system's requirement even under the noisy circumstance or uneven illumination.
基金supported in part by the Natural Science Foundation of Hainan Province under Grant 621MS017the National Natural Science Foundation of China under Grant U19B2044.
文摘License plate recognition technology use widely in intelligent trafficmanagement and control. Researchers have been committed to improving thespeed and accuracy of license plate recognition for nearly 30 years. This paperis the first to propose combining the attention mechanism with YOLO-v5and LPRnet to construct a new license plate recognition model (LPR-CBAMNet).Through the attention mechanism CBAM(Convolutional Block AttentionModule), the importance of different feature channels in license platerecognition can be re-calibrated to obtain proper attention to features. Forceinformation to achieve the purpose of improving recognition speed andaccuracy. Experimental results show that the model construction methodis superior in speed and accuracy to traditional license plate recognitionalgorithms. The accuracy of the recognition model of the CBAM model isincreased by two percentage points to 97.2%, and the size of the constructedmodel is only 1.8 M, which can meet the requirements of real-time executionof embedded low-power devices. The codes for training and evaluating LPRCBAM-Net are available under the open-source MIT License at: https://github.com/To2rk/LPR-CBAM-Net.
文摘Objective To study the main problems existing in the current licensed pharmacists system in China. Methods The relevant literature was searched, and the differences of licensed pharmacists system at home and abroad were compared. Results and Conclusion By comparison, it is found that there are obvious differences in the management system, access system and continuing education of licensed pharmacists between China and foreign countries. In order to improve the system of licensed pharmacists in China, the supervision of licensed pharmacists should be strengthened by introducing relevant laws and regulations as soon as possible. Besides, the admittance criteria of licensed pharmacists should be enhanced, and the continuing education system of licensed pharmacists should be optimized as well.
基金This work was supported by the National Natural Science Foundation of China(Nos.62072405 and 62276233)the Key Research Project of Zhejiang Province(No.2023C01048).
文摘Accurate and efficient urban traffic flow prediction can help drivers identify road traffic conditions in real-time,consequently helping them avoid congestion and accidents to a certain extent.However,the existing methods for real-time urban traffic flow prediction focus on improving the model prediction accuracy or efficiency while ignoring the training efficiency,which results in a prediction system that lacks the scalability to integrate real-time traffic flow into the training procedure.To conduct accurate and real-time urban traffic flow prediction while considering the latest historical data and avoiding time-consuming online retraining,herein,we propose a scalable system for Predicting short-term URban traffic flow in real-time based on license Plate recognition data(PURP).First,to ensure prediction accuracy,PURP constructs the spatio-temporal contexts of traffic flow prediction from License Plate Recognition(LPR)data as effective characteristics.Subsequently,to utilize the recent data without retraining the model online,PURP uses the nonparametric method k-Nearest Neighbor(namely KNN)as the prediction framework because the KNN can efficiently identify the top-k most similar spatio-temporal contexts and make predictions based on these contexts without time-consuming model retraining online.The experimental results show that PURP retains strong prediction efficiency as the prediction period increases.
基金The National Natural Science Foundation of China (No.60972001)the National Key Technology R&D Program of China duringthe 11th Five-Year Plan Period (No.2009BAG13A06)
文摘A novel reconstruction method to improve the recognition of license plate texts of moving vehicles in real traffic videos is proposed, which fuses complimentary information among low resolution (LR) images to yield a high resolution (HR) image. Based on the regularization super-resolution (SR) reconstruction schemes, this paper first introduces a residual gradient (RG) term as a new regularization term to improve the quality of the reconstructed image. Moreover, L1 norm is used to measure the residual data (RD) term and the RG term in order to improve the robustness of the proposed method. Finally, the steepest descent method is exploited to solve the energy functional. Simulated and real acquired video sequence experiments show the effectiveness and practicability of the proposed method and demonstrate its superiority over the bi-cubic interpolation and discontinuity adaptive Markov random field (DAMRF) SR method in both signal to noise ratios (SNR) and visual effects.
文摘Incense in China-Cultural Convergence and Ethnic Integration in the Perspective of Incense.Incense has witnessed the thousands of years of civilization of the Chinese nation,accompanied by the fostering of the Chinese cultural spirit and the formation of philosophical thoughts.The cover story is written by Qin Yanchun,a researcher from the Institute of Chinese Culture of the Chinese National Academy of Arts,who tells us the story of various spices such as Liquidambar orientalis from the"Western Regions",and the cultural convergence and ethnic integration of people of different times in the perspective of spices,incense set,incense products and other license materials.