In this paper, a Lie group method software package based on a symbolic analytical sys-tem, REDUCE, is established for the solution of the linear and nonlinear O/P DE or O/PDEs. By means of this software package, the g...In this paper, a Lie group method software package based on a symbolic analytical sys-tem, REDUCE, is established for the solution of the linear and nonlinear O/P DE or O/PDEs. By means of this software package, the group analyses for the PDE of the orthogonalanisotropic plates are made. We have obtained a set of ODEs of the reduced dimension andall the exact analysis solutions of the former PDE.展开更多
Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is ...Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained.展开更多
In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by deter...In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (Gl/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions.展开更多
In this paper, we propose a nearly analytic exponential time difference (NETD) method for solving the 2D acoustic and elastic wave equations. In this method, we use the nearly analytic discrete operator to approxima...In this paper, we propose a nearly analytic exponential time difference (NETD) method for solving the 2D acoustic and elastic wave equations. In this method, we use the nearly analytic discrete operator to approximate the high-order spatial differential operators and transform the seismic wave equations into semi-discrete ordinary differential equations (ODEs). Then, the converted ODE system is solved by the exponential time difference (ETD) method. We investigate the properties of NETD in detail, including the stability condition for 1-D and 2-D cases, the theoretical and relative errors, the numerical dispersion relation for the 2-D acoustic case, and the computational efficiency. In order to further validate the method, we apply it to simulating acoustic/elastic wave propagation in mul- tilayer models which have strong contrasts and complex heterogeneous media, e.g., the SEG model and the Mar- mousi model. From our theoretical analyses and numerical results, the NETD can suppress numerical dispersion effectively by using the displacement and gradient to approximate the high-order spatial derivatives. In addition, because NETD is based on the structure of the Lie group method which preserves the quantitative properties of differential equations, it can achieve more accurate results than the classical methods.展开更多
Group classification of quasilinear third-order evolution equations is given by using the classical infinitesimal Lie method, the technique of equivalence transformations, and the theory of classification of abstract ...Group classification of quasilinear third-order evolution equations is given by using the classical infinitesimal Lie method, the technique of equivalence transformations, and the theory of classification of abstract low-dimensional Lie algebras. We show that there are three equations admitting simple Lie algebras of dimension three. All non-equivalent equations admitting simple Lie algebras are nothing but these three. Furthermore, we also show that there exist two, five, twenty-nine and twenty-six non- equivalent third-order nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively.展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘In this paper, a Lie group method software package based on a symbolic analytical sys-tem, REDUCE, is established for the solution of the linear and nonlinear O/P DE or O/PDEs. By means of this software package, the group analyses for the PDE of the orthogonalanisotropic plates are made. We have obtained a set of ODEs of the reduced dimension andall the exact analysis solutions of the former PDE.
文摘Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained.
文摘In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (Gl/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions.
文摘In this paper, we propose a nearly analytic exponential time difference (NETD) method for solving the 2D acoustic and elastic wave equations. In this method, we use the nearly analytic discrete operator to approximate the high-order spatial differential operators and transform the seismic wave equations into semi-discrete ordinary differential equations (ODEs). Then, the converted ODE system is solved by the exponential time difference (ETD) method. We investigate the properties of NETD in detail, including the stability condition for 1-D and 2-D cases, the theoretical and relative errors, the numerical dispersion relation for the 2-D acoustic case, and the computational efficiency. In order to further validate the method, we apply it to simulating acoustic/elastic wave propagation in mul- tilayer models which have strong contrasts and complex heterogeneous media, e.g., the SEG model and the Mar- mousi model. From our theoretical analyses and numerical results, the NETD can suppress numerical dispersion effectively by using the displacement and gradient to approximate the high-order spatial derivatives. In addition, because NETD is based on the structure of the Lie group method which preserves the quantitative properties of differential equations, it can achieve more accurate results than the classical methods.
基金supported by the National Key Basic Research Project of China (973 Program)(No. 2004CB318000)
文摘Group classification of quasilinear third-order evolution equations is given by using the classical infinitesimal Lie method, the technique of equivalence transformations, and the theory of classification of abstract low-dimensional Lie algebras. We show that there are three equations admitting simple Lie algebras of dimension three. All non-equivalent equations admitting simple Lie algebras are nothing but these three. Furthermore, we also show that there exist two, five, twenty-nine and twenty-six non- equivalent third-order nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively.