期刊文献+
共找到2,507篇文章
< 1 2 126 >
每页显示 20 50 100
Life Cycle Assessment Introduced by Using Nanorefrigerant of Organic Rankine Cycle System for Waste Heat Recovery
1
作者 Yuchen Yang Lin Ma +2 位作者 Jie Yu Zewen Zhao Pengfei You 《Journal of Renewable Materials》 SCIE EI 2023年第3期1153-1179,共27页
The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been pe... The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been performed for the ORC system using nanorefrigerant,the material and energy input,characteristic indicators and comprehensive index of environmental impact,total energy consumption and energy payback time(BPBT)of the whole life cycle of ORC system using Al_(2)O_(3)/R141b nanorefrigerant were calculated.Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5%after adding 0.2%Al_(2)O_(3)nanoparticles to R141b.Based on the contribution analysis and sensitivity analysis,it can be found out ORC system manufacturing is of the most critical stage,where,the ECER-135 index of ORC component production is the greatest,followed by the preparation process of R141b,transportation phase,and that of Al_(2)O_(3)nanoparticles preparation is small.The retirement phase which has good environmental benefits affects the result significantly by recycling important materials.Meanwhile,the main cause and relevant suggestion for improvement were traced respectively.Finally,the environmental impacts of various power generations were compared,and results show that the power route is of obvious advantage.Among the renewable energy,ORC system using Al_(2)O_(3)/R141b nanorefrigerant with minimal environmental impact is only 0.67%of coal-fired power generation.The environmental impact of current work is about 14.34%of other nations’PV results. 展开更多
关键词 life cycle assessment Organic Rankine cycle NANOREFRIGERANT total energy consumption energy payback time
下载PDF
Carbon footprint accounting for cigar production processes: A life cycle assessment perspective
2
作者 Guanzhun Cao Xiaoyao Guo +8 位作者 Chuan Feng Tong Li Feng Cui Yuan Xu Shuo Yang Qingsong Wang Leping Chen Xueliang Yuan Guifang Chen 《Chinese Journal of Population,Resources and Environment》 2023年第4期231-238,共8页
Although the tobacco industry is a significant contributor to energy consumption and carbon emissions its negative environmental impact has received inadequate attention globally.Cigarette factories are a key link in ... Although the tobacco industry is a significant contributor to energy consumption and carbon emissions its negative environmental impact has received inadequate attention globally.Cigarette factories are a key link in the tobacco industry’s production chain,and using data provided by a cigarette factory in China we conduct a life cycle assessment to account for the carbon footprint of cigar production in cigarette factories.The results of the assessment show that factory air conditioning is the most important contributor to the environmental load of the cigar manufacturing process,while electricity is the key factor that contributes the greatest envi‐ronmental load across all of the processes in the product life cycle.In addition,packaging,including small boxes and cigarette cartons,has a significant impact on the industry’s environmental footprint due to its use of raw materials.We find the carbon footprint of the entire production process for cigar products to be 383.59 kg CO_(2) eq.Based on our findings,we suggest ways to optimize cigar/cigarette factory processes to re‐duce carbon emissions that can help to promote sustainable development in related industries. 展开更多
关键词 Cigar process life cycle assessment Carbon emissions Environmental impact
下载PDF
Carbon emissions reduction potentiality for railroad transportation based on life cycle assessment
3
作者 Yintao Lu Tongtong Zhang +3 位作者 Shengming Qiu Xin Liu Xiaohua Yu Hong Yao 《High-Speed Railway》 2023年第3期195-203,共9页
This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life... This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life cycle carbon emissions of High-Speed Rail(HSR),battery electric vehicles,conventional internal combustion engine vehicles,battery electric buses,and conventional internal combustion engine buses are analyzed.The life cycle is segmented into vehicle manufacturing,fuel or electricity production,operational,and dismantlingrecycling stages.This analysis is applied to the Beijing-Tianjin intercity transportation system to explore emission reduction strategies.Results indicate that HSR demonstrates significant carbon emission reduction,with an intensity of only 24%-32% compared to private vehicles and 47%-89% compared to buses.Notably,HSR travel for Beijing-Tianjin intercity emits only 24% of private vehicle emissions,demonstrating the emission reduction benefits of transportation structure optimization.Additionally,predictive modeling reveals the potential for carbon emission reduction through energy structure optimization,providing a guideline for the development of effective transportation management systems. 展开更多
关键词 life cycle assessment High-speed-rail Transportation structure Intercity transportation Carbon emission reduction potentiality
下载PDF
Overall Life Cycle Comprehensive Assessment of Pneumatic and Electric Actuator 被引量:7
4
作者 ZHANG Yeming CAI Maolin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期584-594,共11页
Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion a... Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion and some rotating occasions. However, there are very few research results about the advantages and disadvantages of two kinds of actuators under the same working conditions so far. In this paper, a novel comprehensive assessment method, named as overall life cycle comprehensive assessment (OLCCA), is proposed for comparison and assessment of pneumatic and electric actuators. OLCCA contains mechanical properties evaluation (MPE), life cycle cost analysis based on users (LCCABOU) and life cycle environmental impact analysis (LCEIA) algorithm in order to solve three difficult problems: mechanical properties assessment, cost analysis and environmental impact assessment about actuators. The mechanical properties evaluation of actuators is a multi-objective optimization problem. The fuzzy data quantification and information entropy methods are combined to establish MPE algorithm of actuators. Two kinds of pneumatic actuators and electric actuators with similar bearing capacity and similar work stroke were taken for example to verify the correctness of MPE algorithm. The case study of MPE algorithm for actuators verified its correctness. LCCABOU for actuators is also set up. Considering cost complex structure of pneumatic actuators, public device cost even method (PDCEM) is firstly presented to solve cost division of public devices such as compressors, aftercooler, receivers, etc. LCCABOU method is also effective and verified by the three groups of pneumatic actuators and electric actuators. Finally, LCEIA model of actuators is established for the environmental impact assessment of actuators. LCEIA data collection method and model establishment procedure for actuators are also put forward. With Simapro 7, LCEIA comparison results of six actuators can be obtained: Fossil fuels are the major environmental factor of pneumatic and electric actuators; Environmental impact of electric actuator is large than one of pneumatic actuator under the similar mechanical properties and working conditions of pneumatic and electric actuators. The results are correct and correspond with the actual mechanical properties of actuators. This paper proposes a comprehensive evaluation method of the actuators, which can solve the critical problem that similar electromechanical products are very difficult to be compared with each other from the angle of performance, cost and environment impact. 展开更多
关键词 ACTUATOR mechanical properties evaluation life cycle cost public device cost even method life cycle assessment
下载PDF
Green evaluation of microwave-assisted leaching process of high titanium slag on life cycle assessment 被引量:4
5
作者 陈菓 陈晋 +1 位作者 彭金辉 万润东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期198-204,共7页
A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quali... A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quality,were investigated,and the concept of green degree was applied in the production of synthetic rutile.An analytic hierarchy process was utilized to assess matrix of greenness evaluation.The Gauss-Seidel iterative matrix method was employed to solve the assessment matrix and obtain the weights and membership functions of all evaluation indexes.A fuzzy decision-making method was applied to build the greenness evaluation model,and then the scores of green degree in microwave-assisted leaching process was obtained.The greenness evaluation model was applied to the life cycle assessment of the microwave-assisted leaching process.The results show that the microwave-assisted leaching process has advantages over the conventional ones,with respect to energy-consumption,processing time and environmental protection. 展开更多
关键词 life cycle assessment greenness evaluation microwave-assisted leaching high titanium slag
下载PDF
A techno-economic and life cycle assessment for the production of green methanol from CO_(2): catalyst and process bottlenecks 被引量:5
6
作者 Tomas Cordero-Lanzac Adrian Ramirez +6 位作者 Alberto Navajas Lieven Gevers Sirio Brunialti Luis MGandía Andrés T.Aguayo S.Mani Sarathy Jorge Gascon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期255-266,共12页
The success of catalytic schemes for the large-scale valorization of CO_(2) does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we pre... The success of catalytic schemes for the large-scale valorization of CO_(2) does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we present a multidisciplinary study(from catalyst to plant and techno-economic/lifecycle analysis)for the production of green methanol from renewable H2 and CO_(2).We combine an in-depth kinetic analysis of one of the most promising recently reported methanol-synthesis catalysts(InCo)with a thorough process simulation and techno-economic assessment.We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO_(2).Our results indicate that up to 1.75 ton of CO_(2) can be abated per ton of produced methanol only if renewable energy is used to run the process,while the sensitivity analysis suggest that either rock-bottom H2 prices(1.5$kg1)or severe CO_(2) taxation(300$per ton)are needed for a profitable methanol plant.Besides,we herein highlight and analyze some critical bottlenecks of the process.Especial attention has been paid to the contribution of H2 to the overall plant costs,CH4 trace formation,and purity and costs of raw gases.In addition to providing important information for policy makers and industrialists,directions for catalyst(and therefore process)improvements are outlined. 展开更多
关键词 CO_(2) METHANOL Kinetic modeling Process simulation life cycle assessment
下载PDF
Life cycle environmental impact assessment of biochar-based bioenergy production and utilization in Northwestern Ontario,Canada 被引量:2
7
作者 Krish Homagain Chander Shahi +1 位作者 Nancy Luckai Mahadev Sharma 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第4期799-809,共11页
Biochar-based bioenergy production and sub- sequent land application of biochar can reduce greenhouse gas emissions by fixing atmospheric carbon into the soil for a long period of time. A thorough life cycle assessmen... Biochar-based bioenergy production and sub- sequent land application of biochar can reduce greenhouse gas emissions by fixing atmospheric carbon into the soil for a long period of time. A thorough life cycle assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario is conducted using SimaPro Ver. 8.1. The results of energy consumption and potential environmental impact of biochar-based bioenergy production system are compared with those of conventional coal-based system. Results show that biocbar land application consumes 4847.61 MJ per tonne dry feedstock more energy than conventional system, but reduces the GHG emissions by 68.19 kg CO2e per tonne of dry feed- stock in its life cycle. Biochar land application improves ecosystem quality by 18 %, reduces climate change by 15 %, and resource use by 13 % but may adversely impact on human health by increasing disability adjusted life years by 1.7 % if biomass availability is low to medium. Replacing fossil fuel with woody biomass has a positiveimpact on the environment, as one tonne of dry biomass feedstock when converted to biochar reduces up to 38 kg CO2e with biochar land application despite using more energy. These results will help understand a comprehensive picture of the new interventions in forestry businesses, which are promoting biochar-based bioenergy production. 展开更多
关键词 Woody biomass Carbon sequestration Environmental impact assessment Greenhouse gasemissions life cycle analysis Soil amendment
下载PDF
Life cycle assessment in the environmental impact evaluation of urbandevelopment--a case study of land readjustment project,Hyogo District, Japan 被引量:5
8
作者 葛坚 陆江 HOKAOKazunori 《Journal of Zhejiang University Science》 EI CSCD 2003年第6期702-708,共7页
In this paper, the Life Cycle of Urban Development was firstly analyzed, and the phases of Life Cycle Assessment applied to Urban Development (ULCA) were described. As a case study, ULCA was applied in the environment... In this paper, the Life Cycle of Urban Development was firstly analyzed, and the phases of Life Cycle Assessment applied to Urban Development (ULCA) were described. As a case study, ULCA was applied in the environmental impact assessment of the land readjustment project of Hyogo District of Saga, Japan. In addition, mitigation proposals for reducing CO2 were also presented and the relevant environmental ef-fects were simulated. 展开更多
关键词 日本 城市发展 生命周期估计 环境影响评介 土地调整计划
下载PDF
Using hybrid modeling for life cycle assessment of motor bike and electric bike 被引量:1
9
作者 戴杜 冷如波 +1 位作者 张成 王成焘 《Journal of Central South University》 SCIE EI CAS 2005年第S2期77-80,共4页
Life-cycle assessment (LCA) is environmental evaluation of products, materials, and processes over their life cycle. Truncation uncertainty and corresponding uncertainty are main problems occurred in process life cycl... Life-cycle assessment (LCA) is environmental evaluation of products, materials, and processes over their life cycle. Truncation uncertainty and corresponding uncertainty are main problems occurred in process life cycle assessment (PLCA) modeling and economic input-output life cycle assessment (EIOLCA) modeling. Through combination of these two modelings in different life cycle stage and use of an uncertainty reduction strategy, a hybrid life cycle assessment modeling method was proposed in this study. Case studies were presented on gasoline-powered motorbikes (M-bike) and electricity-powered electric bike (E-bike). Web-based software was developed to analyze process environmental impacts. Results show that the largest part of life cycle energy (LCE) is consumed at use stage. Less energy is consumed in life cycle of E-bike than that of M-bike. GWP (Global Warming Potential), CO (Carbon Monoxide), PM10 (particulate matter) emission of M-bike are higher than that of E-bike, especially at use stage, AP (acidification Potential) emission of E-bike is higher than that of M-bike. Comprehensively, E-bike is energy efficient and less emitting, and better choice for urban private transportation. 展开更多
关键词 life cycle assessment hybrid modeling BIKE
下载PDF
Life Cycle Assessment of Creosote-Treated Wooden Railroad Crossties in the US with Comparisons to Concrete and Plastic Composite Railroad Crossties 被引量:2
10
作者 Christopher A. Bolin Stephen T. Smith 《Journal of Transportation Technologies》 2013年第2期149-161,共13页
Creosote-treated wooden railroad crossties have been used for more than a century to support steel rails and to transfer load from the rails to the underlying ballast while keeping the rails at the correct gauge. As t... Creosote-treated wooden railroad crossties have been used for more than a century to support steel rails and to transfer load from the rails to the underlying ballast while keeping the rails at the correct gauge. As transportation engineers look for improved service life and environmental performance in railway systems, alternatives to the creosote-treated wooden crosstie are being considered. This paper compares the cradle-to-grave environmental life cycle assessment (LCA) results of creosote-treated wooden railroad crossties with the primary alternative products: concrete and plastic composite (P/C) crossties. This LCA includes a life cycle inventory (LCI) to catalogue the input and output data from crosstie manufacture, service life, and disposition, and a life cycle impact assessment (LCIA) to evaluate greenhouse gas (GHG) emissions, fossil fuel and water use, and emissions with the potential to cause acidification, smog, ecotoxicity, and eutrophication. Comparisons of the products are made at a functional unit of 1.61 kilometers (1.0 mile) of rail-road track per year. This LCA finds that the manufacture, use, and disposition of creosote-treated wooden railroad crossties offers lower fossil fuel and water use and lesser environmental impacts than competing products manufactured of concrete and P/C. 展开更多
关键词 CREOSOTE Environmental Impact RAILROAD Crossties life cycle assessment (lca) CONCRETE PLASTIC COMPOSITE
下载PDF
Life cycle assessment of mobile phone housing 被引量:1
11
作者 YANGJian-xin WANGRu-song +1 位作者 FUHao LIUJing-ru 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第1期100-103,共4页
The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and asse... The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process. 展开更多
关键词 life cycle assessment(lca) housing production DEMATERIALIZATION
下载PDF
Environmental load of solid wood floor production from larch grown at different planting densities based on a life cycle assessment 被引量:1
12
作者 Siying Hu Xin Guan +1 位作者 Minghui Guo Jinman Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1443-1448,共6页
As one of the main structural units in a building,a solid wood floor has significant strategic research value for low-carbon energy saving.Taking the production line of a solid larch wood floor as a case study,we asse... As one of the main structural units in a building,a solid wood floor has significant strategic research value for low-carbon energy saving.Taking the production line of a solid larch wood floor as a case study,we assessed the environmental load during production based upon a life cycle assessment.Using GaBi 6.0 software,we analyzed the associated carbon sequestration during floor production,with the initial planting density serving as the disturbance factor in a modular analysis.The results indicated that the cutting and finishing steps have relatively intense,negative influences on the environment,whereas transportation,ripping,and trimming do not.Additionally,recycling biomass waste has the potential to reduce greenhouse gas emissions.When the initial planting density was 3.0×3.0 m,carbon sequestration was relatively high.Although the emissions of freshwater pollutants,volatile organic compounds,and fine particulate matter(matter with a 2.5-μm diameter) were comparatively high,the reduction of greenhouse gas emissions was still excellent at this planting density. 展开更多
关键词 Environmental effect LARCH life cycle assessment Planting density Solid wood floor
下载PDF
Process of aluminum dross recycling and life cycle assessment for Al-Si alloys and brown fused alumina 被引量:15
13
作者 洪建平 王俊 +3 位作者 陈海 孙宝德 李家镜 陈冲 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2155-2161,共7页
In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatm... In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatment.The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods.Two methods of Al dross recycling which could utilize Al dross efficiently were presented.High-quality aluminum-silicon alloys and brown fused alumina(BFA) were produced successfully by recycling Al dross.Then,life cycle assessment(LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process.The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%.As the LCA results indicate,they have some advantages such as less natural resource consumption and pollutant emissions,which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry. 展开更多
关键词 生命周期评估 回收过程 棕刚玉 硅合金 铝渣 再生铝工业 工艺 Si
下载PDF
Techno-Economic Analysis and Life Cycle Assessment for the Typical Intermediate Crude Refining Scheme in China 被引量:2
14
作者 Zhou Xin Yan Hao +4 位作者 Feng Xiang Zhao Hui Liu Yibin Chen Xiaobo Yang Chaohe 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第4期35-45,共11页
The integration of refinery and petrochemical units(IRPUs)has become an inevitable choice for the sustainable development of petrochemical industry.The utilization efficiency of petroleum resources could be improved o... The integration of refinery and petrochemical units(IRPUs)has become an inevitable choice for the sustainable development of petrochemical industry.The utilization efficiency of petroleum resources could be improved obviously through IRPUs.However,integrating economic and environmental impacts into the model of IRPUs is still a grand challenge.Herein,a model called TEA-GHG-OPWM(Techno-Economic Analysis and GreenHouse Gases Oriented Plant-Wide Model)has been established on Aspen HYSYSTM platform to calculate the energy consumption,the technoeconomic performance,and the GHG emissions for two different kinds of schemes,viz,:VRHCU(Vacuum Residue Hydrocracking Unit)and VRDS-RFCC(Vacuum Residue Desulfurization and Residue Fluid Catalytic Cracking).Furthermore,a novel processing pathway named VGOHDT-HTMP-DC(Vacuum Gas Oil Hydrotreating,Hydrogenation and TMP coupling process and Delayed Coking)has also been developed to find methods to improve the economic performance based on a ten-million-CNY output value(TMYOV)and a reduced GHG emissions.Our results demonstrate that VRHCRU could consume more energy and emit more GHG(877.11 t of CO2 eq·TMYOV^-1·h^-1)than VRDS-RFCC(817.03 t of CO2 eq·TMYOV^-1·h^-1)and VGOHDT-HTMP-DC(721.96 t of CO2 eq·TMYOV^-1·h^-1),while obtaining a higher mass yield of petrochemicals.The VGOHDT-HTMP-DC process exhibits the lowest feedstock consumption,hydrogen consumption,energy consumption,and GHG emissions,indicating that VGOHDT-HTMP-DC has both well economic and environmentally friendly performance. 展开更多
关键词 techno-economic analysis life cycle assessment integration of refinery and petrochemical units intermediate base crude oil process simulation
下载PDF
Life Cycle Assessment-based method of Excessive Commodity Packaging on Energy Conservation and Emissions Reduction 被引量:1
15
作者 Si-ying Wang Xi-chun Bao Ning-ling Wang 《Energy and Power Engineering》 2013年第4期1429-1434,共6页
Based on a Life Cycle Assessment model, the effect of the whole life cycle of excessive commodity packaging on the environment was analyzed by eBalance Evaluation LCA software from production through circulation. The ... Based on a Life Cycle Assessment model, the effect of the whole life cycle of excessive commodity packaging on the environment was analyzed by eBalance Evaluation LCA software from production through circulation. The cost evaluation system and environment impact model of its three main processes, that is, material production, product machining and waste manufacturing, were established to identify the main environmental impact corresponding indicators and the influence on energy conservation and emissions reduction of excessive packaging life cycle. And packaging of moon-cakes was taken as an example to analyze the difference between the ordinary packaging and excessive packaging of moon-cakes in terms of life cycle assessment and costs analysis. Meanwhile some measures are put forward to conserve energy and reduce emissions. 展开更多
关键词 Energy CONSERVATION and EMISSIONS Reduction EXCESSIVE PACKAGE life cycle assessment
下载PDF
Life cycle assessment of HFC-134a production by calcium carbide acetylene route in China 被引量:1
16
作者 Suisui Zhang Jingying Li +4 位作者 Yan Nie Luyao Qiang Boyang Bai Zhiwei Peng Xiaoxun Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期236-244,共9页
HFC-134a is a widely used environment-friendly refrigerant.At present,China is the largest producer of HFC-134a in the world.The production of HFC-134a in China mainly adopts the calcium carbide acetylene route.Howeve... HFC-134a is a widely used environment-friendly refrigerant.At present,China is the largest producer of HFC-134a in the world.The production of HFC-134a in China mainly adopts the calcium carbide acetylene route.However,the production route has high resource and energy consumption and large waste emission,and few of the studies addressed on the environmental performance of its production process.This study quantified the environmental performance of HFC-134a production by calcium carbide route via carrying out a life cycle assessment(LCA)using the CML 2001 method.And uncertainty analysis by Monte-Carlo simulation was also carried out.The results showed that electricity had the most impact on the environment,followed by steam,hydrogen fluoride and chlorine,and the impact of direct CO_(2) emissions in calcium carbide production stage on the global warming effect also could not be ignored.Therefore,the clean energy(e.g.,wind,solar,biomass,and natural gas)was used to replace coal-based electricity and coal-fired steam in this study,showing considerable environmental benefits.At the same time,the use of advanced production technologies could also improve environmental benefits,and the environmental impact of the global warming category could be reduced by 4.1%via using CO_(2) capture and purification technology.The Chinese database of HFC-134a production established in this study provides convenience for the relevant study of scholars.For the production of HFC-134a,this study helps to better identify the specific environmental hotspots and proposes useful ways to improve the environmental benefits. 展开更多
关键词 HFC-134A Calcium carbide life cycle assessment Environmental impact Carbon capture
下载PDF
Life Cycle Assessment of CCA-Treated Wood Highway Guard Rail Posts in the US with Comparisons to Galvanized Steel Guard Rail Posts 被引量:1
17
作者 Christopher A. Bolin Stephen T. Smith 《Journal of Transportation Technologies》 2013年第1期58-67,共10页
A cradle-to-grave life cycle assessment is done to identify the environmental impacts of chromated copper arsenate (CCA)-treated timber used for highway guard rail posts, to understand the processes that contribute to... A cradle-to-grave life cycle assessment is done to identify the environmental impacts of chromated copper arsenate (CCA)-treated timber used for highway guard rail posts, to understand the processes that contribute to the total impacts, and to determine how the impacts compare to the primary alternative product, galvanized steel posts. Guard rail posts are the supporting structures for highway guard rails. Transportation engineers, as well as public and regulatory interests, have increasing need to understand the environmental implications of guard rail post selection, in addition to factors such as costs and service performance. This study uses a life cycle inventory (LCI) to catalogue the input and output data from guard rail post manufacture, service life, and disposition, and a life cycle impact assessment (LCIA) to assess anthropogenic and net greenhouse gas (GHG), acidification, smog, ecotoxicity, and eutrophication potentially resulting from life cycle air emissions. Other indicators of interest also are tracked, such as fossil fuel and water use. Comparisons of guard rail post products are made at a functional unit of one post per year of service. This life cycle assessment (LCA) finds that the manufacture, use, and disposition of CCA-treated wood guard rails offers lower fossil fuel use and lower anthropogenic and net GHG emissions, acidification, smog potential, and ecotoxicity environmental impacts than impact indicator values for galvanized steel posts. Water use and eutrophication impact indicator values for CCA-treated guard rail posts are greater than impact indicator values for galvanized steel guard rail posts. 展开更多
关键词 life cycle assessment lca LCI Environmental Impact Treated Wood Chromated Copper ARSENATE CCA Guard Rail Post Greenhouse Gas GHG Galvanized Steel
下载PDF
Life Cycle Assessment of Recycling High-Density Polyethylene Plastic Waste 被引量:1
18
作者 Neeti Gandhi Nicholas Farfaras +1 位作者 Nien-Hwa Linda Wang Wan-Ting Chen 《Journal of Renewable Materials》 SCIE EI 2021年第8期1463-1483,共21页
Increasing production and use of various novel plastics products,a low recycling rate,and lack of effective recycling/disposal methods have resulted in an exponential growth in plastic waste accumulation in landfills ... Increasing production and use of various novel plastics products,a low recycling rate,and lack of effective recycling/disposal methods have resulted in an exponential growth in plastic waste accumulation in landfills and in the environment.To better understand the effects of plastic waste,Life Cycle Analysis(LCA)was done to compare the effects of various production and disposal methods.LCA shows the specific effects of the cradle-to-grave or cradle-to-cradle scenarios for landfill,incineration,and mechanical recycling.The analysis clearly indicates that increasing recycling of plastics can significantly save energy and eliminate harmful emissions of various carcinogens and GHGs into the environment.As recycling increases,the need for virgin-plastic production can be greatly reduced.Furthermore,the results of this study may help improve current mechanical recycling processes as well as potential future recycling methods,such as chemical recycling.Concerns about the current recycling/disposal methods for plastics have brought increasing attention to the waste accumulation problem.However,with the current COVID-19 pandemic,plastic accumulation is expected to increase significantly in the near future.A better understanding of the quantitative effects of the various disposal methods can help guide policies and future research toward effective solutions of the plastic waste problem. 展开更多
关键词 life cycle Analysis(lca) mechanical recycling microplastic chemical recycling plastic policy
下载PDF
Life Cycle Assessment of PHEV 被引量:5
19
作者 Chen Yisong Hu Xu Liu Jiahui 《汽车技术》 CSCD 北大核心 2017年第9期20-25,共6页
关键词 普锐斯 汽车 能源技术 发展现状
下载PDF
Estimation of Building’s Life Cycle Carbon Emissions Based on Life Cycle Assessment and Building Information Modeling: A Case Study of a Hospital Building in China 被引量:1
20
作者 Kun Lu Hongyu Wang 《Journal of Geoscience and Environment Protection》 2019年第6期147-165,共19页
Throughout the life cycle, the buildings emit a great deal of carbon dioxide into the atmosphere, which directly leads to aggravation in the greenhouse effect and becomes a severe threat to the environment and humans.... Throughout the life cycle, the buildings emit a great deal of carbon dioxide into the atmosphere, which directly leads to aggravation in the greenhouse effect and becomes a severe threat to the environment and humans. Researchers have made numerous efforts to accurately calculate emissions to reduce the life cycle carbon emissions of residential buildings. Nevertheless, there are still difficulties in quickly estimating carbon emissions in the design stage without specific data. To fill this gap, the study, based on Life Cycle Assessment (LCA) and Building Information Modeling (BIM), proposed a quick method for estimating Building’s Life Cycle Carbon Emissions (BLCCE). Taking a hospital building in Chuzhou City, Anhui Province, China as an example, it tested its possibility to estimate BLCCE. The results manifested that: 1) the BLCCE of the project is 40,083.56 tCO2-eq, and the carbon emissions per square meter per year are 119.91 kgCO2-eq/(m2·y);2) the stage of construction, operational and demolition account for 7.90%, 91.31%, and 0.79% of BLCCE, respectively;3) the annual carbon emissions per square meter of hospital are apparently higher than that of villa, residence, and office building, due to larger service population, longer daily operation time, and stricter patient comfort requirements. Considering the lack of BLCCE research in Chinese hospitals, this case study will provide a valuable reference for the estimated BLCCE of hospital building. 展开更多
关键词 Carbon EMISSIONS life cycle assessment BUILDING Information Modeling HOSPITAL BUILDING
下载PDF
上一页 1 2 126 下一页 到第
使用帮助 返回顶部