A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in th...A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.展开更多
High electrochemical stability and safety make Na+superionic conductor(NASICON)-class cathodes highly desirable for Na-ion batteries(SIBs).However,their practical capacity is limited,leading to low specific energy.Fur...High electrochemical stability and safety make Na+superionic conductor(NASICON)-class cathodes highly desirable for Na-ion batteries(SIBs).However,their practical capacity is limited,leading to low specific energy.Furthermore,the low electrical conductivity combined with a decline in capacity upon prolonged cycling(>1000 cycles)related to the loss of active material-carbon conducting contact regions contributes to moderate rate performance and cycling stability.The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials.Herein,we introduce a new carbon-coated Na_(3)VFe_(0.5)Ti_(0.5)(PO_(4))_(3)(NVFTP/C)material as a promising candidate in the NASICON family of cathodes for SIBs.With a high specific energy of∼457 Wh kg^(-1) and a high Na+insertion voltage of 3.0 V versus Na^(+)/Na,this cathode can undergo a reversible single-phase solid-solution and two-phase(de)sodiation evolution at 28 C(1 C=174.7 mAh g^(-1))for up to 10,000 cycles.This study highlights the potential of utilizing low-cost and highly efficient cathodes made from Earth-abundant and harmless materials(Fe and Ti)with enriched Na^(+)-storage properties in practical SIBs.展开更多
Despite the existence of plentiful photocatalyst heterojunctions,their separation efficiency and charge flow precision remain low on account of lacking interfacial modulation.Herein,through a defect-induced heterojunc...Despite the existence of plentiful photocatalyst heterojunctions,their separation efficiency and charge flow precision remain low on account of lacking interfacial modulation.Herein,through a defect-induced heterojunction constructing strategy,Ni4Mo alloys were in-situ grown on the unsaturated coordinated sulfur atoms of sulfur vacancies-rich ZCS(Sv-ZCS)via interfacial Ni-S covalent bonds.The experimental and theoretical results reveal that these unsaturated sulfur atoms induced by sulfur vacancies vastly facilitate to anchor more Ni-Mo nanoparticles and form abundant Ni-S covalent bonds,meanwhile,these sulfur vacancies could form dual internal electric field(IEF)and work with Ni-S covalent bonds as“Electron Bridge”to further accelerate photoelectrons transfer,as well as promote the activation of water molecules and the desorption of hydrogen proton.Accordingly,the optimized Ni_(4)Mo/Sv-ZCS composite achieves an improved photocatalytic hydrogen evolution(PHE)rate of 94.69 mmol h^(-1)g^(-1)without an evident decrease after 6 cycles of photocatalytic tests,which is 21.2 and 1.94 times higher than those of Pt/ZCS and Ni_(4)Mo/ZCS,respectively.This tactic opens a new way for optimizing Zn_(x)Cd_(1-x)S-based heterojunctions by constructing sulfur vacancies and covalent bonds as“Electron Bridge”to enhance the activity of PHE.展开更多
Herein,the catalysts of ultrathin g-C_(3)N_(4)surface-modified hollow spherical Bi2MoO6(g-C_(3)N_(4)/Bi2MoO6,abbreviated as CN/BMO)were fabricated by the co-solvothermal method.The variable valence Mo^(5+)/Mo^(6+)ioni...Herein,the catalysts of ultrathin g-C_(3)N_(4)surface-modified hollow spherical Bi2MoO6(g-C_(3)N_(4)/Bi2MoO6,abbreviated as CN/BMO)were fabricated by the co-solvothermal method.The variable valence Mo^(5+)/Mo^(6+)ionic bridge in CN/BMO catalysts can boost the rapid transfer of photogenerated electrons from Bi2MoO6to g-C_(3)N_(4).And the synergy effect of g-C_(3)N_(4)and Bi2MoO6components remarkably enhance CO_(2)adsorption capability.CN/BMO-2 catalyst has the best performances for visible light-driven CO_(2)reduction compared with single Bi2MoO6and g-C_(3)N_(4),i.e.,its amount and selectivity of CO product are 139.50μmol g-1and 96.88%for 9 h,respectively.Based on the results of characterizations and density functional theory calculation,the photocatalytic mechanism for CO_(2)reduction is proposed.The high-efficient separation efficiency of photogenerated electron-hole pairs,induced by variable valence Mo^(5+)/Mo^(6+)ionic bridge,can boost the rate-limiting steps(COOH*-to-CO*and CO*desorption)of selective visible light-driven CO_(2)conversion into CO.It inspires the establishment of efficient photocatalysts for CO_(2)conversion.展开更多
The present commercial spinel LiMn_(2)O_(4) delivers only 90 m Ah/g–115 m Ah/g,far lower than the theoretical specific capacity.It degrades fast caused by the Jahn–Teller effect,Mn dissolution and related side react...The present commercial spinel LiMn_(2)O_(4) delivers only 90 m Ah/g–115 m Ah/g,far lower than the theoretical specific capacity.It degrades fast caused by the Jahn–Teller effect,Mn dissolution and related side reactions that consume Li inventory.In this work,Zr doping is employed to improve the structural stability and electrochemical performance of spinel LiMn_(2)O_(4).Li_(1.06)Mn_(1.94-x)Zr_xO_4(x=0,0.01,0.02,0.04)have been successfully synthesized by a simple solid-state reaction method and evaluated as cathode for lithium ion batteries(LIB).Li_(1.06)Mn_(1.92)Zr_(0.02)O_4 is superior cathode material with a high capacity of 122 m Ah/g at 1-C rate;long cycle stability,98.39%retention after 100 cycles at 1-C rate,excellent high rate performance 107.1 m Ah/g at 10-C rate,and high temperature performance 97.39%retention after 60 cycles.These are thought to be related to Zr doping effectively stabilizing the spinel LiMn_(2)O_(4),by forming stronger Zr–O bonds in the octahedron,suppressing the Jahn–Teller effect,thus improving electrochemical performance.展开更多
The AEC (Architecture, Engineering, and Construction) industry is gradually shifting away from 2D CAD drawings and toward Building Information Modeling as a result of the fast development of science and technology (BI...The AEC (Architecture, Engineering, and Construction) industry is gradually shifting away from 2D CAD drawings and toward Building Information Modeling as a result of the fast development of science and technology (BIM). The BIM idea’s introduction emphasizes the need to specify a building in a single building model with adequate information to suit its different needs rather than defining it in fragmented documents. This research work aims to use the BIM 4D for the simulation of the construction sequence of a Swivel Bridge. For that, the software Revit was used to make the 3D model of the bridge, and the software Navisworks was used for the 4D construction simulation of the project. The results demonstrated that BIM technology could help reduce delays and problems with the schedule and improve communication among stakeholders, and BIM visualization and simulation features were very useful compared to traditional planning methods.展开更多
Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realiz...Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.展开更多
Two novel heteroatom-bridged his (benzo-12-crown-4 ether)s, i.e. his [2-nitro-4,5 (1,4,7,10-tetraoxadecamethylene) disulfide 1 and diselenide 2, have been synthesized. X ray crystallographic structure was obtained for...Two novel heteroatom-bridged his (benzo-12-crown-4 ether)s, i.e. his [2-nitro-4,5 (1,4,7,10-tetraoxadecamethylene) disulfide 1 and diselenide 2, have been synthesized. X ray crystallographic structure was obtained for 1. Ion selective electrodes (ISE) for Ag+, containing 1 and 2 in PVC membrane as neutral carriers, were prepared, and their selectivity coefficients for Ag^+ (K_(Ag.M)^(pot)) were determined against other heavy metal ions, alkali and alkaline-earth metal ions. and ammonium ion. These ISEs showed excellent Ag^+ selectivities, log K_(Ag.M)^(pot) ≤ -3.8, against most of the interfering canons examined, except for Hg^+.展开更多
The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena a...The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena and his theory of life. This is because although he was one of the top theoretical physicists in Japan before, during and after WWII and after WWII he promoted the establishment of the biophysical society of Japan as one of the founding members, he himself and his studies themselves have seemed to be totally forgotten nowadays in spite that his study was absolutely important for the study of life. Therefore, in this paper I would like to present what kind of person he was and what he studied in physics as a review on the physics work of Motoyosi Sugita for the first time. I will follow his past studies to introduce his ideas in theoretical physics as well as in biophysics as follows: He proposed the bright ideas such as the quasi-static change in the broad sense, the virtual heat, and the field of chemical potential etc. in order to establish his own theory of thermodynamics of transient phenomena, as the generalization of the Onsager-Prigogine’s theory of the irreversible processes. By the concept of the field of chemical potential that acquired the nonlinear transport, he was seemingly successful to exceed and go beyond the scope of Onsager and Prigogine. Once he established his thermodynamics, he explored the existence of the 4th law of thermodynamics for the foundation of theory of life. He applied it to broad categories of transient phenomena including life and life being such as the theory of metabolism. He regarded the 4th law of thermodynamics as the maximum principle in transient phenomena. He tried to prove it all life long. Since I have recently found that his maximum principle can be included in more general maximum principle, which was known as the Pontryagin’s maximum principle in the theory of optimal control, I would like to explain such theories produced by Motoyosi Sugita as detailed as possible. And also I have put short history of Motoyosi Sugita’s personal life in order for you to know him well. I hope that this article helps you to know this wonderful man and understand what he did in the past, which was totally forgotten in the world and even in Japan.展开更多
基金supported by the National Natural Science Foundation of China(51834008,52022109,52274307,and 21804319)National Key Research and Development Program of China(2021YFC2901100)+1 种基金Science Foundation of China University of Petroleum,Beijing(2462022QZDX008,2462021QNX2010,2462020YXZZ019 and 2462020YXZZ016)State Key Laboratory of Heavy Oil Processing(HON-KFKT2022-10).
文摘A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.
基金This work was supported by the National Research Foundation of Korea(NRF)Grant funded by the Korean government(MSIT)(NRF-2018R1A5A1025224 and NRF-2021R1A4A1052051)This work was also supported by the National Research Foundation of Korea Grant funded by the Korean Government Ministry of Education and Science Technology(NRF-2021R1I1A3060193).
文摘High electrochemical stability and safety make Na+superionic conductor(NASICON)-class cathodes highly desirable for Na-ion batteries(SIBs).However,their practical capacity is limited,leading to low specific energy.Furthermore,the low electrical conductivity combined with a decline in capacity upon prolonged cycling(>1000 cycles)related to the loss of active material-carbon conducting contact regions contributes to moderate rate performance and cycling stability.The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials.Herein,we introduce a new carbon-coated Na_(3)VFe_(0.5)Ti_(0.5)(PO_(4))_(3)(NVFTP/C)material as a promising candidate in the NASICON family of cathodes for SIBs.With a high specific energy of∼457 Wh kg^(-1) and a high Na+insertion voltage of 3.0 V versus Na^(+)/Na,this cathode can undergo a reversible single-phase solid-solution and two-phase(de)sodiation evolution at 28 C(1 C=174.7 mAh g^(-1))for up to 10,000 cycles.This study highlights the potential of utilizing low-cost and highly efficient cathodes made from Earth-abundant and harmless materials(Fe and Ti)with enriched Na^(+)-storage properties in practical SIBs.
基金supported by the National Natural Science Foundation of China under Grant(51871078 and 52071119)the Fundamental Research Funds for the Central Universities(HIT.OCEF.2021025)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(ES202211)。
文摘Despite the existence of plentiful photocatalyst heterojunctions,their separation efficiency and charge flow precision remain low on account of lacking interfacial modulation.Herein,through a defect-induced heterojunction constructing strategy,Ni4Mo alloys were in-situ grown on the unsaturated coordinated sulfur atoms of sulfur vacancies-rich ZCS(Sv-ZCS)via interfacial Ni-S covalent bonds.The experimental and theoretical results reveal that these unsaturated sulfur atoms induced by sulfur vacancies vastly facilitate to anchor more Ni-Mo nanoparticles and form abundant Ni-S covalent bonds,meanwhile,these sulfur vacancies could form dual internal electric field(IEF)and work with Ni-S covalent bonds as“Electron Bridge”to further accelerate photoelectrons transfer,as well as promote the activation of water molecules and the desorption of hydrogen proton.Accordingly,the optimized Ni_(4)Mo/Sv-ZCS composite achieves an improved photocatalytic hydrogen evolution(PHE)rate of 94.69 mmol h^(-1)g^(-1)without an evident decrease after 6 cycles of photocatalytic tests,which is 21.2 and 1.94 times higher than those of Pt/ZCS and Ni_(4)Mo/ZCS,respectively.This tactic opens a new way for optimizing Zn_(x)Cd_(1-x)S-based heterojunctions by constructing sulfur vacancies and covalent bonds as“Electron Bridge”to enhance the activity of PHE.
基金supported by the National Natural Science Foundation of China(21972166)the Beijing Natural Science Foundation(2202045)the National Key Research and Development Program of China(2019YFC1907600)。
文摘Herein,the catalysts of ultrathin g-C_(3)N_(4)surface-modified hollow spherical Bi2MoO6(g-C_(3)N_(4)/Bi2MoO6,abbreviated as CN/BMO)were fabricated by the co-solvothermal method.The variable valence Mo^(5+)/Mo^(6+)ionic bridge in CN/BMO catalysts can boost the rapid transfer of photogenerated electrons from Bi2MoO6to g-C_(3)N_(4).And the synergy effect of g-C_(3)N_(4)and Bi2MoO6components remarkably enhance CO_(2)adsorption capability.CN/BMO-2 catalyst has the best performances for visible light-driven CO_(2)reduction compared with single Bi2MoO6and g-C_(3)N_(4),i.e.,its amount and selectivity of CO product are 139.50μmol g-1and 96.88%for 9 h,respectively.Based on the results of characterizations and density functional theory calculation,the photocatalytic mechanism for CO_(2)reduction is proposed.The high-efficient separation efficiency of photogenerated electron-hole pairs,induced by variable valence Mo^(5+)/Mo^(6+)ionic bridge,can boost the rate-limiting steps(COOH*-to-CO*and CO*desorption)of selective visible light-driven CO_(2)conversion into CO.It inspires the establishment of efficient photocatalysts for CO_(2)conversion.
基金research on high power flexible battery in all sea depth(Grant No.2020-XXXX-XX-246-00)。
文摘The present commercial spinel LiMn_(2)O_(4) delivers only 90 m Ah/g–115 m Ah/g,far lower than the theoretical specific capacity.It degrades fast caused by the Jahn–Teller effect,Mn dissolution and related side reactions that consume Li inventory.In this work,Zr doping is employed to improve the structural stability and electrochemical performance of spinel LiMn_(2)O_(4).Li_(1.06)Mn_(1.94-x)Zr_xO_4(x=0,0.01,0.02,0.04)have been successfully synthesized by a simple solid-state reaction method and evaluated as cathode for lithium ion batteries(LIB).Li_(1.06)Mn_(1.92)Zr_(0.02)O_4 is superior cathode material with a high capacity of 122 m Ah/g at 1-C rate;long cycle stability,98.39%retention after 100 cycles at 1-C rate,excellent high rate performance 107.1 m Ah/g at 10-C rate,and high temperature performance 97.39%retention after 60 cycles.These are thought to be related to Zr doping effectively stabilizing the spinel LiMn_(2)O_(4),by forming stronger Zr–O bonds in the octahedron,suppressing the Jahn–Teller effect,thus improving electrochemical performance.
文摘The AEC (Architecture, Engineering, and Construction) industry is gradually shifting away from 2D CAD drawings and toward Building Information Modeling as a result of the fast development of science and technology (BIM). The BIM idea’s introduction emphasizes the need to specify a building in a single building model with adequate information to suit its different needs rather than defining it in fragmented documents. This research work aims to use the BIM 4D for the simulation of the construction sequence of a Swivel Bridge. For that, the software Revit was used to make the 3D model of the bridge, and the software Navisworks was used for the 4D construction simulation of the project. The results demonstrated that BIM technology could help reduce delays and problems with the schedule and improve communication among stakeholders, and BIM visualization and simulation features were very useful compared to traditional planning methods.
文摘Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.
文摘Two novel heteroatom-bridged his (benzo-12-crown-4 ether)s, i.e. his [2-nitro-4,5 (1,4,7,10-tetraoxadecamethylene) disulfide 1 and diselenide 2, have been synthesized. X ray crystallographic structure was obtained for 1. Ion selective electrodes (ISE) for Ag+, containing 1 and 2 in PVC membrane as neutral carriers, were prepared, and their selectivity coefficients for Ag^+ (K_(Ag.M)^(pot)) were determined against other heavy metal ions, alkali and alkaline-earth metal ions. and ammonium ion. These ISEs showed excellent Ag^+ selectivities, log K_(Ag.M)^(pot) ≤ -3.8, against most of the interfering canons examined, except for Hg^+.
文摘The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena and his theory of life. This is because although he was one of the top theoretical physicists in Japan before, during and after WWII and after WWII he promoted the establishment of the biophysical society of Japan as one of the founding members, he himself and his studies themselves have seemed to be totally forgotten nowadays in spite that his study was absolutely important for the study of life. Therefore, in this paper I would like to present what kind of person he was and what he studied in physics as a review on the physics work of Motoyosi Sugita for the first time. I will follow his past studies to introduce his ideas in theoretical physics as well as in biophysics as follows: He proposed the bright ideas such as the quasi-static change in the broad sense, the virtual heat, and the field of chemical potential etc. in order to establish his own theory of thermodynamics of transient phenomena, as the generalization of the Onsager-Prigogine’s theory of the irreversible processes. By the concept of the field of chemical potential that acquired the nonlinear transport, he was seemingly successful to exceed and go beyond the scope of Onsager and Prigogine. Once he established his thermodynamics, he explored the existence of the 4th law of thermodynamics for the foundation of theory of life. He applied it to broad categories of transient phenomena including life and life being such as the theory of metabolism. He regarded the 4th law of thermodynamics as the maximum principle in transient phenomena. He tried to prove it all life long. Since I have recently found that his maximum principle can be included in more general maximum principle, which was known as the Pontryagin’s maximum principle in the theory of optimal control, I would like to explain such theories produced by Motoyosi Sugita as detailed as possible. And also I have put short history of Motoyosi Sugita’s personal life in order for you to know him well. I hope that this article helps you to know this wonderful man and understand what he did in the past, which was totally forgotten in the world and even in Japan.
基金supported by the National Natural Science Foundation of China (21073120, 20773087, 21006063)Science and Technology Commission of Shanghai Municipality, China (09DZ1203603, 10DZ1202702)~~
文摘分别以四水磷酸铁(Fe PO4·4H2O)和二水草酸亚铁(FeC_2O_4·2 H_2O)为铁源,采用简单便捷的流变相法制备了碳包覆LiFe_(0.5)Co_(0.5)PO_4固溶体材料(LiFe_(0.5)Co_(0.5)PO_4/C,简称为LFCP/C)。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电等测试手段对复合材料的物相、形貌结构和电化学性能进行了表征和测试。结果表明,2种铁源得到的材料均为橄榄石晶型结构且结晶度良好,二者在颗粒尺寸分布、碳包覆效果和电化学性能方面具有显著的差别。用作锂离子电池正极材料时,以FeC_2O_4·2 H_2O为原料得到的LFCP/C具有更优异的电性能:在2.5~5.0 V电压范围内,0.1C倍率下(1C=150 m A·g^(-1)),放电比容量为137.5m Ah·g^(-1),在10C仍具有57.6 m Ah·g^(-1)的放电比容量;0.5C循环100次后容量仍保持78.1%。该样品更佳的电化学性能主要得益于其更小的平均颗粒尺寸,更高的比表面积和理想的碳包覆效果。