Sail is the core part of autonomous sailboat and wing sail is a new type of sail. Wing sail generates not only propulsion but also lateral force and heeling moment. The latter two will affect the navigation status and...Sail is the core part of autonomous sailboat and wing sail is a new type of sail. Wing sail generates not only propulsion but also lateral force and heeling moment. The latter two will affect the navigation status and bring resistance. Double sail can effectively reduce the center of wind pressure and heeling moment. In order to study the effect of distance between two sails, airfoil and attack angle on the total lift coefficient of double sail propulsion system, pressure coefficient distribution and lift coefficient calculation model have been established based on vortex panel method. By using the basic finite solution, the fluid dynamic forces on the two-dimensional sails are computed.The results show that, the distance in the range of 0 to 1 time chord length, when using the same airfoil in the fore and aft sail, the total lift coefficient of the double sail increases with the increase of distance, finally reaches a stable value in the range of one to three times chord length. Lift coefficients of thicker airfoils are more sensitive to the change of distance. The thicker the airfoil, the longer distance is required of the total lift coefficient toward stable.When different airfoils are adopted in fore and aft sail, the total lift coefficient increases with the increase of the thickness of aft sail. The smaller the thickness difference is, the more sensitive to the distance change the lift coefficient is. The thinner the fore sail is, the lower the influence will be on the lift coefficient of aft sail.展开更多
Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing ...Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing waves or currents in the ocean. By analyzing the domestic and international norms, this study <span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">pre</span><span style="font-family:Verdana;font-size:12px;">sents a review of calculation methods of wind load on ocean platforms, which </span><span style="letter-spacing:-0.15pt;font-family:Verdana;font-size:12px;">belongs to large-scale non-entity structure used in the open sea while sur</span><span style="font-family:Verdana;font-size:12px;">round</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ing wind has no fixed direction. Current computations according to the</span><span style="font-family:Verdana;font-size:12px;"> norms are not accurate, which even not takes the force of the wind against the surf</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ace perpendicular to the structure into consideration. Additionally, thi</span><span style="font-family:Verdana;font-size:12px;">s study also introduces and compares the lift model of platforms based on different </span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">theories, such as vortex-excitation and vibration, engineering structure dy</span><span style="font-family:Verdana;font-size:12px;">namics, gas flow pressure theory, analyzing their applicability, advantages, and disadvantages. This paper analyzes the limitations and applicable conditions of the existing calculation method itself, such as the lift model is suitable for the existence of stable vortex wake;the calculation method of the structural dynamics of marine engineering must be combined with the wind tunnel test and consider the mistakes caused by the position relationship;the numerical simulation method is accurate but tedious. This study provides an insight into the calculation methods of lift in designing ocean platforms, including the </span><span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">finite element method for simulating fluid force and updating formulas in</span><span style="font-family:Verdana;font-size:12px;"> Chinese norms.</span>展开更多
This paper presents an implementation and posterior analysis of the convergence of the panel method. The implemented panel method is based on vortex lines and an unsteady wake on a flat plate as a wing. The main goal ...This paper presents an implementation and posterior analysis of the convergence of the panel method. The implemented panel method is based on vortex lines and an unsteady wake on a flat plate as a wing. The main goal of the study was to discover parameters and their values range to obtain convergence of the solution. Results of lift convergence in function of control panel’s position, the effect of the size of the wake panels, the dimension of the wake, and the computation time are quantitatively described. The lift results are similar to the predictions by the lifting-line theory and the wake exhibited an expected shape, showing wingtip, and start vortices. Geometric parameters and non-dimensional values were developed to increase accuracy and stability of the method.展开更多
基金financially supported by the JIANG Xinsong Innovation Fund(Grant No.Y8F7010701)
文摘Sail is the core part of autonomous sailboat and wing sail is a new type of sail. Wing sail generates not only propulsion but also lateral force and heeling moment. The latter two will affect the navigation status and bring resistance. Double sail can effectively reduce the center of wind pressure and heeling moment. In order to study the effect of distance between two sails, airfoil and attack angle on the total lift coefficient of double sail propulsion system, pressure coefficient distribution and lift coefficient calculation model have been established based on vortex panel method. By using the basic finite solution, the fluid dynamic forces on the two-dimensional sails are computed.The results show that, the distance in the range of 0 to 1 time chord length, when using the same airfoil in the fore and aft sail, the total lift coefficient of the double sail increases with the increase of distance, finally reaches a stable value in the range of one to three times chord length. Lift coefficients of thicker airfoils are more sensitive to the change of distance. The thicker the airfoil, the longer distance is required of the total lift coefficient toward stable.When different airfoils are adopted in fore and aft sail, the total lift coefficient increases with the increase of the thickness of aft sail. The smaller the thickness difference is, the more sensitive to the distance change the lift coefficient is. The thinner the fore sail is, the lower the influence will be on the lift coefficient of aft sail.
文摘Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing waves or currents in the ocean. By analyzing the domestic and international norms, this study <span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">pre</span><span style="font-family:Verdana;font-size:12px;">sents a review of calculation methods of wind load on ocean platforms, which </span><span style="letter-spacing:-0.15pt;font-family:Verdana;font-size:12px;">belongs to large-scale non-entity structure used in the open sea while sur</span><span style="font-family:Verdana;font-size:12px;">round</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ing wind has no fixed direction. Current computations according to the</span><span style="font-family:Verdana;font-size:12px;"> norms are not accurate, which even not takes the force of the wind against the surf</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ace perpendicular to the structure into consideration. Additionally, thi</span><span style="font-family:Verdana;font-size:12px;">s study also introduces and compares the lift model of platforms based on different </span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">theories, such as vortex-excitation and vibration, engineering structure dy</span><span style="font-family:Verdana;font-size:12px;">namics, gas flow pressure theory, analyzing their applicability, advantages, and disadvantages. This paper analyzes the limitations and applicable conditions of the existing calculation method itself, such as the lift model is suitable for the existence of stable vortex wake;the calculation method of the structural dynamics of marine engineering must be combined with the wind tunnel test and consider the mistakes caused by the position relationship;the numerical simulation method is accurate but tedious. This study provides an insight into the calculation methods of lift in designing ocean platforms, including the </span><span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">finite element method for simulating fluid force and updating formulas in</span><span style="font-family:Verdana;font-size:12px;"> Chinese norms.</span>
文摘This paper presents an implementation and posterior analysis of the convergence of the panel method. The implemented panel method is based on vortex lines and an unsteady wake on a flat plate as a wing. The main goal of the study was to discover parameters and their values range to obtain convergence of the solution. Results of lift convergence in function of control panel’s position, the effect of the size of the wake panels, the dimension of the wake, and the computation time are quantitatively described. The lift results are similar to the predictions by the lifting-line theory and the wake exhibited an expected shape, showing wingtip, and start vortices. Geometric parameters and non-dimensional values were developed to increase accuracy and stability of the method.