A fluid flow model consisting of Bernoulli’s law in its normal form, the equation of state of air, and the cross-stream force balance between a downward pressure gradient and the upward centrifugal force on fluid par...A fluid flow model consisting of Bernoulli’s law in its normal form, the equation of state of air, and the cross-stream force balance between a downward pressure gradient and the upward centrifugal force on fluid particles moving along curved streamlines over the top circular wing surface involving three equations in three unknowns (pressure, density and velocity) are solved to show that both density and pressure decrease upward as the inverse square of the distance from the circle’s center, and the velocity is independent of that dis-tance. These derived characteristics are used to explain the lift force on the wing in what is believed to be a novel way.展开更多
文摘A fluid flow model consisting of Bernoulli’s law in its normal form, the equation of state of air, and the cross-stream force balance between a downward pressure gradient and the upward centrifugal force on fluid particles moving along curved streamlines over the top circular wing surface involving three equations in three unknowns (pressure, density and velocity) are solved to show that both density and pressure decrease upward as the inverse square of the distance from the circle’s center, and the velocity is independent of that dis-tance. These derived characteristics are used to explain the lift force on the wing in what is believed to be a novel way.