John Njoroge hopes to be an astro naut when he grows up. The seven- year old Kenyan boy said that flying must be an exciting job. His influenee comes from watching movies and playing video games.
In this paper, we investigate spectral method for mixed inhomogeneous boundary value problems in three dimensions. Some results on the three-dimensional Legendre approxima- tion in Jacobi weighted Sobolev space are es...In this paper, we investigate spectral method for mixed inhomogeneous boundary value problems in three dimensions. Some results on the three-dimensional Legendre approxima- tion in Jacobi weighted Sobolev space are established, which improve and generalize the existing results, and play an important role in numerical solutions of partial differential equations. We also develop a lifting technique, with which we could handle mixed inho- mogeneous boundary conditions easily. As examples of applications, spectral schemes are provided for three model problems with mixed inhomogeneous boundary conditions. The spectral accuracy in space of proposed algorithms is proved. Efficient implementations are presented. Numerical results demonstrate their high accuracy, and confirm the theoretical analysis well.展开更多
文摘John Njoroge hopes to be an astro naut when he grows up. The seven- year old Kenyan boy said that flying must be an exciting job. His influenee comes from watching movies and playing video games.
文摘In this paper, we investigate spectral method for mixed inhomogeneous boundary value problems in three dimensions. Some results on the three-dimensional Legendre approxima- tion in Jacobi weighted Sobolev space are established, which improve and generalize the existing results, and play an important role in numerical solutions of partial differential equations. We also develop a lifting technique, with which we could handle mixed inho- mogeneous boundary conditions easily. As examples of applications, spectral schemes are provided for three model problems with mixed inhomogeneous boundary conditions. The spectral accuracy in space of proposed algorithms is proved. Efficient implementations are presented. Numerical results demonstrate their high accuracy, and confirm the theoretical analysis well.