The mainland’s largest oil and gas producer China National Petroleum Corp,or Petro China,reported a 290percent rise in third-quarter net profit as the company reaped the rewards of a strong rebound in crude prices an...The mainland’s largest oil and gas producer China National Petroleum Corp,or Petro China,reported a 290percent rise in third-quarter net profit as the company reaped the rewards of a strong rebound in crude prices and deleveraging.With the other two mainland oil majors-CNOOC and Sinopec-also reporting higher thirdquarter numbers,industry analysts expected the strong rebound to continue in the fourth quarter of the year also.展开更多
A canonical p-adic Frobenius lift is defined in the context of p-adic numbers, viewed as deformations of the corresponding finite field. Applications to p-adic periods are considered, including to the classical Euler ...A canonical p-adic Frobenius lift is defined in the context of p-adic numbers, viewed as deformations of the corresponding finite field. Applications to p-adic periods are considered, including to the classical Euler gamma and beta functions and their p-adic analogues, from a cohomological point of view. Connections between various methods for computing scattering amplitudes are related to the moduli space problem and period domains.展开更多
Considering the bundle of 2-jets as a realization of the holomorphic manifold over 3-dimensional nilpotent algebra,the authors introduce a new class of lifts of connections in the bundle of 2-jets which is a generaliz...Considering the bundle of 2-jets as a realization of the holomorphic manifold over 3-dimensional nilpotent algebra,the authors introduce a new class of lifts of connections in the bundle of 2-jets which is a generalization of the complete lifts.展开更多
Using the complete lift on tangent bundles, the authors construct the complete lift on cotangent bundles of tensor fields with the aid of a musical isomorphism. In this new framework, the authors have a new intrepreta...Using the complete lift on tangent bundles, the authors construct the complete lift on cotangent bundles of tensor fields with the aid of a musical isomorphism. In this new framework, the authors have a new intrepretation of the complete lift of tensor fields on cotangent bundles.展开更多
This paper generalizes the factorization theorem of Gouveia,Parrilo and Thomas to a broader class of convex sets.Given a general convex set,the authors define a slack operator associated to the set and its polar accor...This paper generalizes the factorization theorem of Gouveia,Parrilo and Thomas to a broader class of convex sets.Given a general convex set,the authors define a slack operator associated to the set and its polar according to whether the convex set is full dimensional,whether it is a translated cone and whether it contains lines.The authors strengthen the condition of a cone lift by requiring not only the convex set is the image of an affine slice of a given closed convex cone,but also its recession cone is the image of the linear slice of the closed convex cone.The authors show that the generalized lift of a convex set can also be characterized by the cone factorization of a properly defined slack operator.展开更多
The main purpose of this paper is to study the differential geometrical objects on tangent bundle corresponding to dual-holomorphic objects of dual-holomorphic manifold.As a result of this approach,the authors find a ...The main purpose of this paper is to study the differential geometrical objects on tangent bundle corresponding to dual-holomorphic objects of dual-holomorphic manifold.As a result of this approach,the authors find a new class of lifts(deformed complete lifts)in the tangent bundle.展开更多
To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different ...To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition.展开更多
In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are e...In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems.展开更多
At present,the cranes used at sea have several shortcomings in terms of flexibility,efficiency,and safety.Therefore,a floating multi-robot coordinated lifting system is proposed to fulfill the offshore lifting require...At present,the cranes used at sea have several shortcomings in terms of flexibility,efficiency,and safety.Therefore,a floating multi-robot coordinated lifting system is proposed to fulfill the offshore lifting requirements.First,the structure of the lifting system is established according to the lifting task,the kinematic model of the system is developed by using the D–H coordinate transformation,and the dynamic model is developed based on rigid-body dynamics and hydrodynamics.Then,the static and dynamic workspace of the lifting system are analyzed,and the solving steps of the workspace are given by using the Monte–Carlo method.The effect of the load mass and the maximum allowable tension of the cable on the workspace is examined by simulation.Results show that the lifting system has limited carrying capacity and a data reference for selecting the structural parameters by analyzing the factors affecting the workspace.Findings provide a basis for further research on the optimal design of structural parameters and the determination of safe configurations of the lifting system.展开更多
One of the crucial and challenging issues for researchers is presenting an appropriate approach to evaluate the aerodynamic characteristics of air cushion vehicles(ACVs)in terms of system design parameters.One of thes...One of the crucial and challenging issues for researchers is presenting an appropriate approach to evaluate the aerodynamic characteristics of air cushion vehicles(ACVs)in terms of system design parameters.One of these issues includes introducing a suitable approach to analyze the effect of geometric shapes on the aerodynamic characteristics of ACVs.The main novelty of this paper lies in presenting an innovative method to study the geometric shape effect on air cushion lift force,which has not been investigated thus far.Moreover,this paper introduces a new approximate mathematical formula for calculating the air cushion lift force in terms of parameters,including the air gap,lateral gaps,air inlet velocity,and scaling factor for the first time.Thus,we calculate the aerodynamic lift force applied to nine different shapes of the air cushions used in the ACVs in the present paper through the ANSYS Fluent software.The geometrical shapes studied in this paper are rectangular,square,equilateral triangle,circular,elliptic shapes,and four other combined shapes,including circle-rectangle,circle-square,hexagonal,and fillet square.Results showed that the cushion with a circular pattern produces the highest lift force among other geometric shapes with the same conditions.The increase in the cushion lift force can be attributed to the fillet with a square shape and its increasing radius compared with the square shape.展开更多
A tunneled planing hull has unique hybrid hydrodynamic and aerodynamic characteristics due to the presence of a tunnel.In this paper,experimental and numerical investigations on hydrody namic analysis of a tunneled pl...A tunneled planing hull has unique hybrid hydrodynamic and aerodynamic characteristics due to the presence of a tunnel.In this paper,experimental and numerical investigations on hydrody namic analysis of a tunneled planing hull are carried out.The resistance tests of models with three dif ferent masses(127.4 kg,159.5 kg,202.9 kg)are conducted for the Froude number in the range of 0.761≤Fn≤1.925.The results of resistance measured by towing tank imply that the tunneled planing hull with a larger displacement has a superior resistance performance.The numerical simulation of Reynolds Average Navier Stokes(RANS)equations based on the finite volume method is performed to analyze the hull characteristics in calm water(M=159.5 kg)with two degrees of freedom(sinkage and trim).The numerical results are compared with the experimental data,which shows good agreement.Pressure distribution,wave profiles and lift forces obtained by SST k-ωand Realizable k-εturbulence models are compared and discussed.Finally,the local fluid flow of streamline around the hull can be divided into four regions due to the presence of a tunnel,which is different from the behaviors of the conventional planing monohull with prismatic form.展开更多
The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of th...The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of the train.In recent years,under the background of increasing train speed,some scientific researchers have proposed a new idea of using the lift force generated by the aerodynamic wings(aero-wing)installed on the roof to reduce the sprung load of the carriage in order to alleviate the wear and tear of the wheel and rail.Based on the bidirectional running characteristics of high-speed train,this paper proposes a scheme to apply aero-wings with anteroposterior symmetrical cross-sections on the roof of the train.After the verification of the wind tunnel experimental data,the relatively better airfoil section and extension formof anteroposterior symmetrical aero-wing is selected respectively in this paper,and the aero-wings are fixedly connected to the roof of the train through the mounting column to conduct aerodynamic simulation analysis.The research shows that:compared with the circular-arc and oval crosssections,this paper believes that the crescent cross-section can form greater aerodynamic lift force in a limited space.Considering factors such as aerodynamic parameters,ground effect,and manufacturing process,this paper proposes to adopt aero-wings with arc type extension form and connect them to the roof of the train through mounting columns with shuttle cross-section.When the roof of the train is covered with aero-wings and runs at high speed,the sprung load of the carriages can be effectively reduced.However,there are certain hidden dangers in the tail carriage due to the large amount of lift force,so,the intervention of the aero-wing lifting mechanism is required.At the same time,it is necessary to optimize the overall aerodynamic drag force reduction in the followup work.展开更多
The dynamics of rotating hydrodynamic systems containing phase inclusions are interesting due to the related widespread occurrence in nature and technology.The influence of external force fields on rotating systems ca...The dynamics of rotating hydrodynamic systems containing phase inclusions are interesting due to the related widespread occurrence in nature and technology.The influence of external force fields on rotating systems can be used to control the dynamics of inclusions of various types.Controlling inclusions is of current interest for space technologies.In low gravity,even a slight vibration effect can lead to the appearance of a force acting on phase inclusions near a solid boundary.When vibrations are applied to multiphase hydrodynamic systems,the oscillating body intensively interacts with the fluid and introduces changes in the related flow structure.Asymmetries in the fluid flow lead to the appearance of an averaged force.As a result,the body is repelled from the cavity boundary and takes a position at a certain distance from it.The vibrationally-induced movement of phase inclusions in liquids can be used to improve various technological processes(for example,when degassing and cleaning liquids from solid inclusions,mixing various components,etc.).This study presents a relevant methodology to study the averaged vibrational force acting on a pair of free cylindrical bodies near the oscillating wall of a cavity.Attention is paid to the region of moderate and low dimensionless frequencies when the size of the inclusion is consistent with the thickness of the Stokes boundary layer.The dynamics of these bodies is considered in a horizontal cylindrical cavity with a fluid undergoing modulated rotation.The average lift force of a vibrational nature is measured by the method of quasi-stationary suspension of bodies whose density differs from the density of the liquid in a static centrifugal force field.The developed technique makes it possible to determine the dependence of the lift force on vibration parameters and the distance from the oscillating boundary at which solid inclusions are located.It is shown that in the region of moderate dimensionless frequencies,the average lift force acting on an inclusion near the boundary undergoing modulated rotation almost linearly depends on the dimensionless frequency.展开更多
Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to s...Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.展开更多
BACKGROUND Lateral window approach for sinus floor lift is commonly used for vertical bone augmentation in cases when the residual bone height is less than 5 mm.However,managing cases becomes more challenging when a m...BACKGROUND Lateral window approach for sinus floor lift is commonly used for vertical bone augmentation in cases when the residual bone height is less than 5 mm.However,managing cases becomes more challenging when a maxillary sinus pseudocyst is present or when there is insufficient bone width.In this case,we utilized the bone window prepared during the lateral window sinus lift as a shell for horizontal bone augmentation.This allowed for simultaneous horizontal and vertical bone augmentation immediately after the removal of the maxillary sinus pseudocyst.CASE SUMMARY A 28-year-old female presented to our clinic with the chief complaint of missing upper left posterior teeth.Intraoral examination showed a horizontal deficiency of the alveolar ridge contour.The height of the alveolar bone was approximately 3.6 mm on cone beam computed tomography(CBCT).And a typical well-defined'dome-shaped'lesion in maxillary sinus was observed on CBCT imaging.The lateral bony window was prepared using a piezo-ultrasonic device,then the bony window was fixed to the buccal side of the 26 alveolar ridge using a titanium screw with a length of 10 mm and a diameter of 1.5 mm.The space between the bony window and the alveolar ridge was filled with Bio-Oss,covered with a Bio-Gide collagen membrane,and subsequently sutured.Nine months later,the patient’s bone width increased from 4.8 to 10.5 mm,and the bone height increased from 3.6 to 15.6 mm.Subsequently,a Straumann^(■)4.1 mm×10 mm implant was placed.The final all-ceramic crown restoration was completed four months later,and both clinical and radiographic examinations showed that the implant was successful,and the patient was satisfied with the results.CONCLUSION The bone block harvested from the lateral window sinus lift can be used for simultaneous horizontal bone augmentation acting as a shell for good two-dimensional bone augmentation.展开更多
ObjectiveMinimally invasive treatments for benign prostatic hyperplasia (BPH) have seen an increase in usage in recent years. We aimed to determine what types of events may influence patient search habits related to s...ObjectiveMinimally invasive treatments for benign prostatic hyperplasia (BPH) have seen an increase in usage in recent years. We aimed to determine what types of events may influence patient search habits related to surgical BPH treatments.MethodsGoogle Trends was used to determine the frequency of searches for different minimally invasive and prostatic ablative treatments for BPH in the United States. The procedures including transurethral resection of the prostate (TURP), Aquablation therapy (Aquablation), Greenlight laser therapy (Greenlight), transurethral needle ablation, transurethral microwave thermotherapy, Urolift (prostatic urethral lift [PUL]), Rezum, iTind, holmium laser enucleation of the prostate, simple prostatectomy, and prostatic artery embolization were compared.ResultsFrom January 1, 2004 to February 28, 2023, the number of internet search queries have increased for TURP, PUL, Rezum, prostatic artery embolization, and holmium laser enucleation of the prostate. There has been a slight decrease in searches for Greenlight, transurethral needle ablation, transurethral microwave thermotherapy, iTind, simple prostatectomy, and Aquablation.ConclusionDespite increased searches of alternatives, TURP remains the most searched BPH procedure. Additionally, search habits may be influenced by several factors including government approval, corporate acquisition, and marketing campaigns. It is important for physicians to understand the types of events that may cause patients to inquire about certain treatments for better quality health information and clinical visits.展开更多
China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of whichare located in remote and environmentally harsh mountainous areas. To address the long-term stable prod...China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of whichare located in remote and environmentally harsh mountainous areas. To address the long-term stable productionof these gas wells, plunger-lift technology plays an important role. In order to fully understand and accurately graspthe drainage and gas production mechanisms of plunger-lift, a mechanical model of plunger-liquid column uplift inthe plunger-lift process was established, focusing on conventional plunger-lift systems and representative wellboreconfigurations in the Linxing region. The operating casing pressure of the plunger-lift process and the calculationmethod for the maximum daily fluid production rate based on the work regime with the highest fluid recovery ratewere determined. For the first time, the critical flow rate method was proposed as a constraint for the maximumliquid-carrying capacity of the plunger-lift, and liquid-carrying capacity charts for conventional plunger-lift withdifferent casing sizes were developed. The results showed that for 23/8 casing plunger-lift, with a well depth ofshallower than 808 m, the maximum drainage rate was 33 m3/d;for 27/8 casing plunger-lift, with a well depth ofshallower than 742 m, the maximum drainage rate was 50.15 m3/d;for 31/2 casing plunger-lift, with a well depthof shallower than 560 m, the maximum drainage rate was 75.14 m3/d. This research provides a foundation for thescientific selection of plunger-lift technology and serves as a decision-making reference for developing reasonableplunger-lift work regimes.展开更多
The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the...The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the kinematic and dynamic analysis of the lifting system,the elastic catenary mod-el considering the elasticity and mass of the flexible rope is established,and the effect of the deform-ation of the flexible rope on the position and posture of the suspended object is analyzed.According to the deformation of flexible rope,a real-time trajectory compensation method is proposed based on the compensation principle of position and posture.Under the lifting task of the low-speed move-ment,this is compared with that of the system which neglects the deformation of the flexible rope.The trajectoy of the lifting system considering the deformation of flexible rope.The results show that the mass and elasticity of the flexible rope can not be neglected.Meanwhile,the proposed trajectory compensation method can improve the movement accuracy of the lifting system,which verifies the ef-fectiveness of this compensation method.The research results provide the basis for trajectory plan-ning and coordinated control of the lifting system。展开更多
文摘The mainland’s largest oil and gas producer China National Petroleum Corp,or Petro China,reported a 290percent rise in third-quarter net profit as the company reaped the rewards of a strong rebound in crude prices and deleveraging.With the other two mainland oil majors-CNOOC and Sinopec-also reporting higher thirdquarter numbers,industry analysts expected the strong rebound to continue in the fourth quarter of the year also.
文摘A canonical p-adic Frobenius lift is defined in the context of p-adic numbers, viewed as deformations of the corresponding finite field. Applications to p-adic periods are considered, including to the classical Euler gamma and beta functions and their p-adic analogues, from a cohomological point of view. Connections between various methods for computing scattering amplitudes are related to the moduli space problem and period domains.
文摘Considering the bundle of 2-jets as a realization of the holomorphic manifold over 3-dimensional nilpotent algebra,the authors introduce a new class of lifts of connections in the bundle of 2-jets which is a generalization of the complete lifts.
基金supported by the Scientific and Technological Research Council of Turkey(No.112T111)
文摘Using the complete lift on tangent bundles, the authors construct the complete lift on cotangent bundles of tensor fields with the aid of a musical isomorphism. In this new framework, the authors have a new intrepretation of the complete lift of tensor fields on cotangent bundles.
基金supported by Equipment Pre-Research Field Fund under Grant Nos.JZX7Y20190258055501,JZX7Y20190243016801the National Natural Science Foundation of China under Grant No.11901544+2 种基金the National Key Research Project of China under Grant No.2018YFA0306702the National Natural Science Foundation of China under Grant No.11571350supported by National Institute for Mathematical Sciences 2014 Thematic Program on Applied Algebraic Geometry in Daejeon,South Korea。
文摘This paper generalizes the factorization theorem of Gouveia,Parrilo and Thomas to a broader class of convex sets.Given a general convex set,the authors define a slack operator associated to the set and its polar according to whether the convex set is full dimensional,whether it is a translated cone and whether it contains lines.The authors strengthen the condition of a cone lift by requiring not only the convex set is the image of an affine slice of a given closed convex cone,but also its recession cone is the image of the linear slice of the closed convex cone.The authors show that the generalized lift of a convex set can also be characterized by the cone factorization of a properly defined slack operator.
文摘The main purpose of this paper is to study the differential geometrical objects on tangent bundle corresponding to dual-holomorphic objects of dual-holomorphic manifold.As a result of this approach,the authors find a new class of lifts(deformed complete lifts)in the tangent bundle.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2800700)the National Natural Science Foundation of China(Grant Nos.52171330,52101379,52101380,51679053)+2 种基金the Project of Research and Development Plan in Key Areas of Guangdong Province(Grant No.2020B1111010002)the Foundation of Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources(Grant No.MESTA-2021-B010)the Natural Science Foundation of Guangdong Province,China(Grant No.2021A1515012134)。
文摘To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition.
基金Ho Chi Minh City University of Technology(HCMUT)Vietnam National University Ho Chi Minh City(VNU-HCM)for supporting this study。
文摘In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems.
基金Supported by the National Natural Science Foundation of China under Grant No.51965032the National Natural Science Foundation of Gansu Province of China under Grant No.22JR5RA319+1 种基金the Science and Technology Foundation of Gansu Province of China under Grant No.21YF5WA060the Excellent Doctoral Student Foundation of Gansu Province of China under Grant No.23JRRA842。
文摘At present,the cranes used at sea have several shortcomings in terms of flexibility,efficiency,and safety.Therefore,a floating multi-robot coordinated lifting system is proposed to fulfill the offshore lifting requirements.First,the structure of the lifting system is established according to the lifting task,the kinematic model of the system is developed by using the D–H coordinate transformation,and the dynamic model is developed based on rigid-body dynamics and hydrodynamics.Then,the static and dynamic workspace of the lifting system are analyzed,and the solving steps of the workspace are given by using the Monte–Carlo method.The effect of the load mass and the maximum allowable tension of the cable on the workspace is examined by simulation.Results show that the lifting system has limited carrying capacity and a data reference for selecting the structural parameters by analyzing the factors affecting the workspace.Findings provide a basis for further research on the optimal design of structural parameters and the determination of safe configurations of the lifting system.
文摘One of the crucial and challenging issues for researchers is presenting an appropriate approach to evaluate the aerodynamic characteristics of air cushion vehicles(ACVs)in terms of system design parameters.One of these issues includes introducing a suitable approach to analyze the effect of geometric shapes on the aerodynamic characteristics of ACVs.The main novelty of this paper lies in presenting an innovative method to study the geometric shape effect on air cushion lift force,which has not been investigated thus far.Moreover,this paper introduces a new approximate mathematical formula for calculating the air cushion lift force in terms of parameters,including the air gap,lateral gaps,air inlet velocity,and scaling factor for the first time.Thus,we calculate the aerodynamic lift force applied to nine different shapes of the air cushions used in the ACVs in the present paper through the ANSYS Fluent software.The geometrical shapes studied in this paper are rectangular,square,equilateral triangle,circular,elliptic shapes,and four other combined shapes,including circle-rectangle,circle-square,hexagonal,and fillet square.Results showed that the cushion with a circular pattern produces the highest lift force among other geometric shapes with the same conditions.The increase in the cushion lift force can be attributed to the fillet with a square shape and its increasing radius compared with the square shape.
文摘A tunneled planing hull has unique hybrid hydrodynamic and aerodynamic characteristics due to the presence of a tunnel.In this paper,experimental and numerical investigations on hydrody namic analysis of a tunneled planing hull are carried out.The resistance tests of models with three dif ferent masses(127.4 kg,159.5 kg,202.9 kg)are conducted for the Froude number in the range of 0.761≤Fn≤1.925.The results of resistance measured by towing tank imply that the tunneled planing hull with a larger displacement has a superior resistance performance.The numerical simulation of Reynolds Average Navier Stokes(RANS)equations based on the finite volume method is performed to analyze the hull characteristics in calm water(M=159.5 kg)with two degrees of freedom(sinkage and trim).The numerical results are compared with the experimental data,which shows good agreement.Pressure distribution,wave profiles and lift forces obtained by SST k-ωand Realizable k-εturbulence models are compared and discussed.Finally,the local fluid flow of streamline around the hull can be divided into four regions due to the presence of a tunnel,which is different from the behaviors of the conventional planing monohull with prismatic form.
基金supported by National Key Research and Development Program of China (2020YFA0710902)National Natural Science Foundation of China (12172308)Project of State Key Laboratory of Traction Power (2023TPL-T05).
文摘The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of the train.In recent years,under the background of increasing train speed,some scientific researchers have proposed a new idea of using the lift force generated by the aerodynamic wings(aero-wing)installed on the roof to reduce the sprung load of the carriage in order to alleviate the wear and tear of the wheel and rail.Based on the bidirectional running characteristics of high-speed train,this paper proposes a scheme to apply aero-wings with anteroposterior symmetrical cross-sections on the roof of the train.After the verification of the wind tunnel experimental data,the relatively better airfoil section and extension formof anteroposterior symmetrical aero-wing is selected respectively in this paper,and the aero-wings are fixedly connected to the roof of the train through the mounting column to conduct aerodynamic simulation analysis.The research shows that:compared with the circular-arc and oval crosssections,this paper believes that the crescent cross-section can form greater aerodynamic lift force in a limited space.Considering factors such as aerodynamic parameters,ground effect,and manufacturing process,this paper proposes to adopt aero-wings with arc type extension form and connect them to the roof of the train through mounting columns with shuttle cross-section.When the roof of the train is covered with aero-wings and runs at high speed,the sprung load of the carriages can be effectively reduced.However,there are certain hidden dangers in the tail carriage due to the large amount of lift force,so,the intervention of the aero-wing lifting mechanism is required.At the same time,it is necessary to optimize the overall aerodynamic drag force reduction in the followup work.
基金financially supported by the Russian Science Foundation(Grant No.22-71-00081).
文摘The dynamics of rotating hydrodynamic systems containing phase inclusions are interesting due to the related widespread occurrence in nature and technology.The influence of external force fields on rotating systems can be used to control the dynamics of inclusions of various types.Controlling inclusions is of current interest for space technologies.In low gravity,even a slight vibration effect can lead to the appearance of a force acting on phase inclusions near a solid boundary.When vibrations are applied to multiphase hydrodynamic systems,the oscillating body intensively interacts with the fluid and introduces changes in the related flow structure.Asymmetries in the fluid flow lead to the appearance of an averaged force.As a result,the body is repelled from the cavity boundary and takes a position at a certain distance from it.The vibrationally-induced movement of phase inclusions in liquids can be used to improve various technological processes(for example,when degassing and cleaning liquids from solid inclusions,mixing various components,etc.).This study presents a relevant methodology to study the averaged vibrational force acting on a pair of free cylindrical bodies near the oscillating wall of a cavity.Attention is paid to the region of moderate and low dimensionless frequencies when the size of the inclusion is consistent with the thickness of the Stokes boundary layer.The dynamics of these bodies is considered in a horizontal cylindrical cavity with a fluid undergoing modulated rotation.The average lift force of a vibrational nature is measured by the method of quasi-stationary suspension of bodies whose density differs from the density of the liquid in a static centrifugal force field.The developed technique makes it possible to determine the dependence of the lift force on vibration parameters and the distance from the oscillating boundary at which solid inclusions are located.It is shown that in the region of moderate dimensionless frequencies,the average lift force acting on an inclusion near the boundary undergoing modulated rotation almost linearly depends on the dimensionless frequency.
文摘Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.
文摘BACKGROUND Lateral window approach for sinus floor lift is commonly used for vertical bone augmentation in cases when the residual bone height is less than 5 mm.However,managing cases becomes more challenging when a maxillary sinus pseudocyst is present or when there is insufficient bone width.In this case,we utilized the bone window prepared during the lateral window sinus lift as a shell for horizontal bone augmentation.This allowed for simultaneous horizontal and vertical bone augmentation immediately after the removal of the maxillary sinus pseudocyst.CASE SUMMARY A 28-year-old female presented to our clinic with the chief complaint of missing upper left posterior teeth.Intraoral examination showed a horizontal deficiency of the alveolar ridge contour.The height of the alveolar bone was approximately 3.6 mm on cone beam computed tomography(CBCT).And a typical well-defined'dome-shaped'lesion in maxillary sinus was observed on CBCT imaging.The lateral bony window was prepared using a piezo-ultrasonic device,then the bony window was fixed to the buccal side of the 26 alveolar ridge using a titanium screw with a length of 10 mm and a diameter of 1.5 mm.The space between the bony window and the alveolar ridge was filled with Bio-Oss,covered with a Bio-Gide collagen membrane,and subsequently sutured.Nine months later,the patient’s bone width increased from 4.8 to 10.5 mm,and the bone height increased from 3.6 to 15.6 mm.Subsequently,a Straumann^(■)4.1 mm×10 mm implant was placed.The final all-ceramic crown restoration was completed four months later,and both clinical and radiographic examinations showed that the implant was successful,and the patient was satisfied with the results.CONCLUSION The bone block harvested from the lateral window sinus lift can be used for simultaneous horizontal bone augmentation acting as a shell for good two-dimensional bone augmentation.
文摘ObjectiveMinimally invasive treatments for benign prostatic hyperplasia (BPH) have seen an increase in usage in recent years. We aimed to determine what types of events may influence patient search habits related to surgical BPH treatments.MethodsGoogle Trends was used to determine the frequency of searches for different minimally invasive and prostatic ablative treatments for BPH in the United States. The procedures including transurethral resection of the prostate (TURP), Aquablation therapy (Aquablation), Greenlight laser therapy (Greenlight), transurethral needle ablation, transurethral microwave thermotherapy, Urolift (prostatic urethral lift [PUL]), Rezum, iTind, holmium laser enucleation of the prostate, simple prostatectomy, and prostatic artery embolization were compared.ResultsFrom January 1, 2004 to February 28, 2023, the number of internet search queries have increased for TURP, PUL, Rezum, prostatic artery embolization, and holmium laser enucleation of the prostate. There has been a slight decrease in searches for Greenlight, transurethral needle ablation, transurethral microwave thermotherapy, iTind, simple prostatectomy, and Aquablation.ConclusionDespite increased searches of alternatives, TURP remains the most searched BPH procedure. Additionally, search habits may be influenced by several factors including government approval, corporate acquisition, and marketing campaigns. It is important for physicians to understand the types of events that may cause patients to inquire about certain treatments for better quality health information and clinical visits.
基金the Fundamental Research Funds for the Central Universities of China(No.20CX02308A)CNOOC Project(No.ZX2022ZCCYF3835).
文摘China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of whichare located in remote and environmentally harsh mountainous areas. To address the long-term stable productionof these gas wells, plunger-lift technology plays an important role. In order to fully understand and accurately graspthe drainage and gas production mechanisms of plunger-lift, a mechanical model of plunger-liquid column uplift inthe plunger-lift process was established, focusing on conventional plunger-lift systems and representative wellboreconfigurations in the Linxing region. The operating casing pressure of the plunger-lift process and the calculationmethod for the maximum daily fluid production rate based on the work regime with the highest fluid recovery ratewere determined. For the first time, the critical flow rate method was proposed as a constraint for the maximumliquid-carrying capacity of the plunger-lift, and liquid-carrying capacity charts for conventional plunger-lift withdifferent casing sizes were developed. The results showed that for 23/8 casing plunger-lift, with a well depth ofshallower than 808 m, the maximum drainage rate was 33 m3/d;for 27/8 casing plunger-lift, with a well depth ofshallower than 742 m, the maximum drainage rate was 50.15 m3/d;for 31/2 casing plunger-lift, with a well depthof shallower than 560 m, the maximum drainage rate was 75.14 m3/d. This research provides a foundation for thescientific selection of plunger-lift technology and serves as a decision-making reference for developing reasonableplunger-lift work regimes.
基金the National Natural Science Foundation of China(No.51965032)the Natural Science Foundation of Gansu Province of China(No.22JR5RA319)+1 种基金the Science and Technology Foundation of Gansu Province of China(No.21YF5WA060)the Excellent Doctoral Student Foundation of Gansu Province of China(No.23JRRA842).
文摘The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the kinematic and dynamic analysis of the lifting system,the elastic catenary mod-el considering the elasticity and mass of the flexible rope is established,and the effect of the deform-ation of the flexible rope on the position and posture of the suspended object is analyzed.According to the deformation of flexible rope,a real-time trajectory compensation method is proposed based on the compensation principle of position and posture.Under the lifting task of the low-speed move-ment,this is compared with that of the system which neglects the deformation of the flexible rope.The trajectoy of the lifting system considering the deformation of flexible rope.The results show that the mass and elasticity of the flexible rope can not be neglected.Meanwhile,the proposed trajectory compensation method can improve the movement accuracy of the lifting system,which verifies the ef-fectiveness of this compensation method.The research results provide the basis for trajectory plan-ning and coordinated control of the lifting system。