Amorphous forms of C will first be compared and contrasted with amorphous Si, the differences in chemical bonding being emphasized in relation to atomic structure. After a brief discussion of ordered layers of graphit...Amorphous forms of C will first be compared and contrasted with amorphous Si, the differences in chemical bonding being emphasized in relation to atomic structure. After a brief discussion of ordered layers of graphite and of BN, some attention will be focused on BN cages and polymers and on C nanotubes. Finally properties of Na metal clusters will be discussed, including fission of such charged clusters展开更多
The effects of light elements on the elastic properties of disordered binary hcp-Fe alloys were investigated at high pressures using plane-wave density functional theory combined with the Monte Carlo special quasi-ran...The effects of light elements on the elastic properties of disordered binary hcp-Fe alloys were investigated at high pressures using plane-wave density functional theory combined with the Monte Carlo special quasi-random structure method.We found that the increase in the O content in hcp-Fe had a more pronounced effect on the sound velocity than Si,S,and C.The longitudinal wave velocity was decreased by∼6%with 2%O content,which was a much greater decrease than the values of 0.6%and 2%induced by the same content of Si and S,respectively,under high pressures.Compared with the other three light elements,the longitudinal wave velocity of the Fe-C alloy exhibited the most gradual decreasing with increasing C content.In addition,the effects of different O and S contents on the anisotropy of hcp-Fe alloys strongly depended on the variation in pressure,whereas the pressure only slightly affected the anisotropy of Fe-Si alloy systems.展开更多
Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g...Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g.,H,B,C,and N)into noble metal lattices plays an important role in optimizing catalytic performance by modulating structural and electronic properties.In this review,we present a general overview of the recent advances in the modification of noble metals with light alloying elements for various catalytic reactions,particularly for energy‐related applications.We summarize the types,location,concentration,and ordering degree of light atoms as major factors in the performance of noble metal‐based catalysts,with emphasis on how they can be rationally controlled to promote activity and selectivity.We then summarize the synthetic strategies developed to incorporate light elements and highlight the theoretical and experimental methods for understanding the alloying effects.We further focus on the wide usage of noble metal‐based catalysts modified with different light alloying atoms and attempt to correlate the structural features with their catalytic performances.Finally,we discuss current challenges and future perspectives regarding the development of highly efficient noble metal‐based catalysts modified with light elements.展开更多
Aluminum light poles play a pivotal role in modern infrastructure, ensuring proper illumination along highways and in populated areas during nighttime. These poles typically feature handholes near their bases, providi...Aluminum light poles play a pivotal role in modern infrastructure, ensuring proper illumination along highways and in populated areas during nighttime. These poles typically feature handholes near their bases, providing access to electrical wiring for installation and maintenance. While essential for functionality, these handholes introduce a vulnerability to the overall structure, making them a potential failure point. Although prior research and analyses on aluminum light poles have been conducted, the behavior of smaller diameter poles containing handholes remains unexplored. Recognizing this need, a research team at the University of Akron undertook a comprehensive experimental program involving aluminum light poles with handholes containing welded inserts in order to gain a better understanding of their fatigue life, mechanical behavior, and failure mechanisms. The research involved testing seven large-scale aluminum light poles each 8-inch diameter, with two separate handholes. These handholes included a reinforcement that was welded to the poles. Finite Element Analysis (FEA), statistical analysis, and comparison analysis with their large counterparts (10-inch diameter) were used to augment the experimental results. The results revealed two distinct failure modes: progressive crack propagation leading to ultimate failure, and rupture of the pole near the weld initiation/termination site around the handhole. The comparison analysis indicated that the 8-inch diameter specimens exhibited an average fatigue life exceeding that of their 10-inch counterparts by an average of 30.7%. The experimental results were plotted alongside the fatigue detail classifications outlined in the Aluminum Design Manual (ADM), enhancing understanding of the fatigue detail category of the respective poles/handholes.展开更多
The total content of light rare earth elements( LREEs) in the soil of navel orange orchards of Gannan area is greater than that of heavy rare earth elements( HREEs). Appropriate content of LREE can not only promote th...The total content of light rare earth elements( LREEs) in the soil of navel orange orchards of Gannan area is greater than that of heavy rare earth elements( HREEs). Appropriate content of LREE can not only promote the growth of navel oranges,and it is also conducive to human health. On the basis of exploring the correlations between the content of LREE in the soil of navel orange orchards of Gannan area and the contents of LREE in navel orange leaves and fruit,the influence mechanism of LREEs on the quality of navel oranges was revealed. In this study,with two Newhall navel orange orchards with different soil LREEs background levels in Xinfeng County as the research object,the changes in the content of LREE( lanthanum,La; cerium,Ce; praseodymium,Pr; neodymium,Nd) in leaves and fruit of navel orange at different growth stages were analyzed using Inductively Coupled Plasma-Mass Spectrometry( ICP-MS),and the correlations between the content of LREE in the soil,navel orange leaves and navel orange fruit were studied. The results showed that the contents of the four kinds of LREEs in the soil ranked as Ce > La > Nd > Pr,and there were significant differences among them( P < 0. 01). Navel orange leaves and fruit have selective and heterogenic absorption for LREEs. At different growth stages,La showed the highest accumulation amount in the leaves and fruit of navel orange; and the content of LREE in the leaves of navel orange increased first and then decreased,while that in the fruit of navel orange showed continuous decrease. During the migration of LREEs from soil to leaves to fruit,the content of LREE decreased rapidly as the migration distance increased. The accumulation amount of LREE in navel orange was positively correlated with the content of LREE in the soil. The correlation between the content of LREE in the leaves and fruit of navel orange was greatest. Among the four kinds of LREEs,the correlation of La was greatest,followed by Ce,indicating that the accumulation amount of LREE in the navel orange body was affected by the element types.展开更多
Different separation techniques such as solvent extraction, ion exchange, and precipitation are often used for recovery of rare earth elements (REEs) from pregnant leach solutions obtained from acid leaching. Solvent ...Different separation techniques such as solvent extraction, ion exchange, and precipitation are often used for recovery of rare earth elements (REEs) from pregnant leach solutions obtained from acid leaching. Solvent extraction is generally accepted as the most appropriate commercial technology for separating REEs due to the need to be able to handle larger volumes of diluted pregnant solutions. This study focused on the development of selective separation of light and heavy REEs from the pregnant leach solution obtained from leaching of apatite ore in 1 M sulfuric acid (H2SO4) using solvent extraction. Three different commercial organophosphorus extractants (di-(2-ethylhexyl) phosphoric acid (D2EHPA), 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC88A) and tributyl phosphate (TBP)), and the influences of experimental parameters such as extractant concentration, organic/aqueous phase ratio, diluent type, pH, extraction time and stripping agent concentration were examined. Results showed that light REEs (LREEs) and heavy REEs (HREEs) in the pregnant leach solution were selectively separated with D2EHPA via a two-stage extraction process. In the first-stage of solvent extraction, >90% of (0.05 g/L) HREEs was extracted with 1.8 M D2EHPA in kerosene while the vast majority (>95%) of LREEs was remained in raffinate. In the second-stage, >93% (1.01 g/L) of LREEs was extracted from the raffinate with 1.8 M D2EHPA dissolved in kerosene at pH 1.6. HREEs (>95%) and LREEs (>90%) loaded with D2EHPA after the first and second-stage of extraction were stripped by 4 M H2SO4 and 1 M H2SO4 solutions, respectively. Distribution of middle rare earth elements (MREEs) was discussed through the extraction processes in this study.展开更多
文摘Amorphous forms of C will first be compared and contrasted with amorphous Si, the differences in chemical bonding being emphasized in relation to atomic structure. After a brief discussion of ordered layers of graphite and of BN, some attention will be focused on BN cages and polymers and on C nanotubes. Finally properties of Na metal clusters will be discussed, including fission of such charged clusters
基金supported by the Natural Science Foundation of Sichuan Province(2022NSFSC1826,2022NSFSC1243).
文摘The effects of light elements on the elastic properties of disordered binary hcp-Fe alloys were investigated at high pressures using plane-wave density functional theory combined with the Monte Carlo special quasi-random structure method.We found that the increase in the O content in hcp-Fe had a more pronounced effect on the sound velocity than Si,S,and C.The longitudinal wave velocity was decreased by∼6%with 2%O content,which was a much greater decrease than the values of 0.6%and 2%induced by the same content of Si and S,respectively,under high pressures.Compared with the other three light elements,the longitudinal wave velocity of the Fe-C alloy exhibited the most gradual decreasing with increasing C content.In addition,the effects of different O and S contents on the anisotropy of hcp-Fe alloys strongly depended on the variation in pressure,whereas the pressure only slightly affected the anisotropy of Fe-Si alloy systems.
文摘Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g.,H,B,C,and N)into noble metal lattices plays an important role in optimizing catalytic performance by modulating structural and electronic properties.In this review,we present a general overview of the recent advances in the modification of noble metals with light alloying elements for various catalytic reactions,particularly for energy‐related applications.We summarize the types,location,concentration,and ordering degree of light atoms as major factors in the performance of noble metal‐based catalysts,with emphasis on how they can be rationally controlled to promote activity and selectivity.We then summarize the synthetic strategies developed to incorporate light elements and highlight the theoretical and experimental methods for understanding the alloying effects.We further focus on the wide usage of noble metal‐based catalysts modified with different light alloying atoms and attempt to correlate the structural features with their catalytic performances.Finally,we discuss current challenges and future perspectives regarding the development of highly efficient noble metal‐based catalysts modified with light elements.
文摘Aluminum light poles play a pivotal role in modern infrastructure, ensuring proper illumination along highways and in populated areas during nighttime. These poles typically feature handholes near their bases, providing access to electrical wiring for installation and maintenance. While essential for functionality, these handholes introduce a vulnerability to the overall structure, making them a potential failure point. Although prior research and analyses on aluminum light poles have been conducted, the behavior of smaller diameter poles containing handholes remains unexplored. Recognizing this need, a research team at the University of Akron undertook a comprehensive experimental program involving aluminum light poles with handholes containing welded inserts in order to gain a better understanding of their fatigue life, mechanical behavior, and failure mechanisms. The research involved testing seven large-scale aluminum light poles each 8-inch diameter, with two separate handholes. These handholes included a reinforcement that was welded to the poles. Finite Element Analysis (FEA), statistical analysis, and comparison analysis with their large counterparts (10-inch diameter) were used to augment the experimental results. The results revealed two distinct failure modes: progressive crack propagation leading to ultimate failure, and rupture of the pole near the weld initiation/termination site around the handhole. The comparison analysis indicated that the 8-inch diameter specimens exhibited an average fatigue life exceeding that of their 10-inch counterparts by an average of 30.7%. The experimental results were plotted alongside the fatigue detail classifications outlined in the Aluminum Design Manual (ADM), enhancing understanding of the fatigue detail category of the respective poles/handholes.
基金Supported by National Natural Science Foundation of China(31760551)Jiangxi Natural Science Foundation(20152ACB21002)Collaborative Innovation Special Funds of Jiangxi Academy of Sciences(2013-XTPH1-05)
文摘The total content of light rare earth elements( LREEs) in the soil of navel orange orchards of Gannan area is greater than that of heavy rare earth elements( HREEs). Appropriate content of LREE can not only promote the growth of navel oranges,and it is also conducive to human health. On the basis of exploring the correlations between the content of LREE in the soil of navel orange orchards of Gannan area and the contents of LREE in navel orange leaves and fruit,the influence mechanism of LREEs on the quality of navel oranges was revealed. In this study,with two Newhall navel orange orchards with different soil LREEs background levels in Xinfeng County as the research object,the changes in the content of LREE( lanthanum,La; cerium,Ce; praseodymium,Pr; neodymium,Nd) in leaves and fruit of navel orange at different growth stages were analyzed using Inductively Coupled Plasma-Mass Spectrometry( ICP-MS),and the correlations between the content of LREE in the soil,navel orange leaves and navel orange fruit were studied. The results showed that the contents of the four kinds of LREEs in the soil ranked as Ce > La > Nd > Pr,and there were significant differences among them( P < 0. 01). Navel orange leaves and fruit have selective and heterogenic absorption for LREEs. At different growth stages,La showed the highest accumulation amount in the leaves and fruit of navel orange; and the content of LREE in the leaves of navel orange increased first and then decreased,while that in the fruit of navel orange showed continuous decrease. During the migration of LREEs from soil to leaves to fruit,the content of LREE decreased rapidly as the migration distance increased. The accumulation amount of LREE in navel orange was positively correlated with the content of LREE in the soil. The correlation between the content of LREE in the leaves and fruit of navel orange was greatest. Among the four kinds of LREEs,the correlation of La was greatest,followed by Ce,indicating that the accumulation amount of LREE in the navel orange body was affected by the element types.
文摘Different separation techniques such as solvent extraction, ion exchange, and precipitation are often used for recovery of rare earth elements (REEs) from pregnant leach solutions obtained from acid leaching. Solvent extraction is generally accepted as the most appropriate commercial technology for separating REEs due to the need to be able to handle larger volumes of diluted pregnant solutions. This study focused on the development of selective separation of light and heavy REEs from the pregnant leach solution obtained from leaching of apatite ore in 1 M sulfuric acid (H2SO4) using solvent extraction. Three different commercial organophosphorus extractants (di-(2-ethylhexyl) phosphoric acid (D2EHPA), 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC88A) and tributyl phosphate (TBP)), and the influences of experimental parameters such as extractant concentration, organic/aqueous phase ratio, diluent type, pH, extraction time and stripping agent concentration were examined. Results showed that light REEs (LREEs) and heavy REEs (HREEs) in the pregnant leach solution were selectively separated with D2EHPA via a two-stage extraction process. In the first-stage of solvent extraction, >90% of (0.05 g/L) HREEs was extracted with 1.8 M D2EHPA in kerosene while the vast majority (>95%) of LREEs was remained in raffinate. In the second-stage, >93% (1.01 g/L) of LREEs was extracted from the raffinate with 1.8 M D2EHPA dissolved in kerosene at pH 1.6. HREEs (>95%) and LREEs (>90%) loaded with D2EHPA after the first and second-stage of extraction were stripped by 4 M H2SO4 and 1 M H2SO4 solutions, respectively. Distribution of middle rare earth elements (MREEs) was discussed through the extraction processes in this study.