期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
Eco-physiological characteristics of Tetracentron sinense Oliv.saplings in response to different light intensities
1
作者 Rong Wang Xueheng Lu +4 位作者 Hongyan Han Xuemei Zhang Yonghong Ma Qinsong Liu Xiaohong Gan 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期29-44,共16页
The regeneration of Tetracentron sinense Oliv.is poor in the understory and in open areas due to the charac-teristics of natural regeneration of the species on forest edges and in gaps.It is unclear whether different ... The regeneration of Tetracentron sinense Oliv.is poor in the understory and in open areas due to the charac-teristics of natural regeneration of the species on forest edges and in gaps.It is unclear whether different light intensities in various habitats affect eco-physiological characteristics of saplings and their natural regeneration.In this study,the light intensity in T.sinense habitats was simulated by artificial shading(L1:100%NS(natural sunlight)in the open;L2:50%NS in a forest gap or edge;L3:10%NS in understory)to investigate differences in morphology,leaf structure,physiology,and photosynthesis of 2-year-old sap-lings,and to analyze the mechanism of light intensity on sapling establishment.Significant differences were observed in morphology(including leaf area,and specific leaf area)under different light intensities.Compared to L1 and L3,chloroplast structure in L2 was intact.With increasing time,superoxide dismutase(SOD)and catalase(CAT)activities in L2 became gradually higher than under the other light intensities,while malondialdehyde(MDA)content was opposite.Shading decreased osmoregulation substance contents of leaves but increased chlorophyll.The results suggest that light intensities significantly affect the eco-physiological characteristics of T.sinense saplings and they would respond most favorably at intermediate levels of light by optimizing eco-physiological characteristics.Therefore,50%natural sunlight should be created to promote saplings establishment and population recovery of T.sinense during in situ conservation,including sowing mature seeds in forest edges or gaps and providing appropriate shade protection for seedlings and saplings in the open. 展开更多
关键词 Chloroplast ultrastructure Eco-physiological characteristics light intensities Sapling establishment Tetracentron sinense Oliv
下载PDF
Germination Characteristics and Secondary Metabolism Regulation of Scutellaria baicalensis Georgi Seeds under Different Light Intensities 被引量:2
2
作者 孙兆伟 刘金花 +1 位作者 李佳 张永清 《Agricultural Science & Technology》 CAS 2013年第6期842-846,共5页
[Objective] This study aimed to investigate the primary and secondary metabolisms during the germination of Scutellaria baicalensis Georgi seeds under different light intensities. [Method] The activities of CHL, solub... [Objective] This study aimed to investigate the primary and secondary metabolisms during the germination of Scutellaria baicalensis Georgi seeds under different light intensities. [Method] The activities of CHL, soluble sugar, PAL, C4H and CHS were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by High Performance Liquid Chromatography (HPLC). [Result] The results indicate that the germination of Scutellaria baicalensis Georgi seeds is not sensitive to light and the seedlings were very sensitive to light. The CHL, soluble sugar, PAL, C4H and CHS continuously increased with light intensity. The content of secondary metabolites also increased. [Conclusion] Light increased the formation of leaf photosynthetic pigment, thereby affecting the primary metabolites. The activities of PAL, C4H and CHS significantly increased with the development of light intensity. Finally the secondary metabolites of medicinal plants increased sharply. Therefore, the quality of Scutellaria baicalensis Georgi materials can be improved by increasing the light intensity moderately. 展开更多
关键词 light intensity PAL C4H CHS Secondary metabolites
下载PDF
Insights into the differences in leaf functional traits of heterophyllous Syringa oblata under different light intensities 被引量:11
3
作者 Hongguang Xiao Congyan Wang +2 位作者 Jun Liu Lei Wang Daolin Du 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第3期613-621,共9页
Many plants exhibit heterophylly; the spatially and temporally remarkable ontogenetic differences in leaf morphology may play an adaptative role in their success under diverse habitats. Thus, this study aimed to gain ... Many plants exhibit heterophylly; the spatially and temporally remarkable ontogenetic differences in leaf morphology may play an adaptative role in their success under diverse habitats. Thus, this study aimed to gain insights into differences in leaf functional traits of heterophyllous Syringa oblata Lindl., which has been widely used as an ornamental tree around the world under different light intensities in East China. No significant differences existed in specific leaf area (SLA) between lanceolate- and heart-shaped leaves. Differ- ences in the investment per unit of light capture surface area deployed between lanceolate- and heart-shaped leaves may benot obvious. This may be attributing to the fact that single leaf wet and dry weight of heart-shaped leaves were significantly higher than those of lanceolate leaves but leaf length and leaf thickness of heart-shaped leaves were significantly lower than those of lanceolate leaves. The SLA of shade trees was sig- nificantly higher than that of sun trees. The investment per unit of light capture surface of shade trees was lower than that of sun trees, making it possible to increase light capture and use efficiency in low-light environments. The phenotypic plas- ticity of most leaf functional traits of lanceoiate leaves was higher than those of heart-shaped leaves because the former is the juvenile and the latter is the adult leaf shape during the process of phylogenetic development of S. oblate. The higher range of phenotypic plasticity of leaf thickness and leaf moisture for sun trees may be beneficial to obtain a more efficient control of water loss and nutrient deprivation in high- light environments, and the lower range of phenotypic plas- ticity of single leaf wet and dry weight, and SLA for shade trees may gain an advantage to increase resource (especially light) capture and use efficiency in low-light environments. In brief, the successfully ecological strategy of plants is to find an optimal mode for the trade-off between various functional traits to obtain more living resources and achieve more fitness advantage as much as possible in the multivariate environment. 展开更多
关键词 Heterophylly light intensity Specific leafareas Syringa oblata Lindl.
下载PDF
Changes in the Photosynthetic Pigment Contents and Transcription Levels of Phycoerythrin-Related Genes in Three Gracilariopsis lemaneiformis Strains Under Different Light Intensities 被引量:2
4
作者 CAO Xuexue WANG Haitao +5 位作者 ZANG Xiaonan LIU Zhu XU Di JIN Yuming ZHANG Feng WANG Zhendong 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第3期661-668,共8页
Three Gracilariopsis lemaneiformis strains,including wild type and high-temperature-resistant cultivars 981 and 2007,were studied with the changes in their photosynthetic pigment contents and related gene transcriptio... Three Gracilariopsis lemaneiformis strains,including wild type and high-temperature-resistant cultivars 981 and 2007,were studied with the changes in their photosynthetic pigment contents and related gene transcription levels under different light intensities(10,60,100,and 200μmolm^(−2)s^(−1)).The three G.lemaneiformis strains had the following photosynthetic pigments with high-to-low contents:phycoerythrin(PE),phycocyanin(PC),allophycocyanin(APC),and chlorophyll a(Chl a).Among the three strains,cultivar 981 had the highest PE content,followed by cultivar 2007.The PC and APC contents were similar among the three strains,but they were higher in cultivars 981 and 2007 than in the wild type.The Chl a contents in the three G.lemaneiformis strains were equal.A low light intensity(10μmolm^(−2)s^(−1))promoted photosynthetic pigment accumulation in G.lemaneiformis and improved the relative PE gene transcription(peA and peB)in a short period(≤6 d).A high light intensity decreased the PE content.PebA and PebB,which catalyzed phycoerythrobilin synthesis,showed no compensatory upregulation at a low light intensity among the strains except for the wild type.At a high light intensity,transcription levels of pebA and pebB in the three strains were upregulated.This study provided an experimental basis for elucidating the photosynthesis of G.lemaneiformis.As key genes of algal growth,photo-synthesis-related genes served as useful gene markers for screening elite varieties with good traits in breeding.Cultivar 2007 was superior to cultivar 981 in terms of maintaining high pigment levels in a wide range of light intensities,which is the most suitable for aquaculture. 展开更多
关键词 Gracilariopsis lemaneiformis light intensity photosynthetic pigment PE gene transcription
下载PDF
Model prediction of inactivation of Aeromonas salmonicida grown on poultry in situ by intense pulsed light 被引量:1
5
作者 Jingwen Wang Zhenzhen Ning +2 位作者 Yifan Chen Xinglian Xu Huhu Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期1011-1017,共7页
The aim of this study was to evaluate the factors influencing the inactivation effect of intense pulsed light(IPL)on Aeromonas salmonicida grown on chicken meat and skin,and to further develop prediction models of ina... The aim of this study was to evaluate the factors influencing the inactivation effect of intense pulsed light(IPL)on Aeromonas salmonicida grown on chicken meat and skin,and to further develop prediction models of inactivation.In this work,chicken meat and skin inoculated with meat-borne A.salmonicida isolates were subjected to IPL treatments under different conditions.The results showed that IPL had obvious bactericidal effect in the chicken skin and thickness groups when the treatment voltage and time were 7 V combined with 5 s.In addition,the lethality curves of A.salmonicida were fitted under IPL conditions of 3.5-7.5 V.The comparison of statistical parameters revealed that the Weibull model could best fit the mortality curves and could accurately predict the mortality dynamic of A.salmonicida grown on chicken skin.And further a secondary model between the scale factor b and the treatment voltage in Weibull model was established using linear equations,which determined that the secondary model could accurately predict the inactivation of A.salmonicida.This study provides a theoretical basis for future prediction models of Aeromonas,and also provides new ideas for sterilization approaches of meat-borne Aeromonas. 展开更多
关键词 Aeromonas salmonicida Intense pulsed light INACTIVATION Chicken meat MODEL
下载PDF
Photoperiod Mediates the Effects of Temperature and Light Intensity on the Proliferation of Ulva prolifera
6
作者 JIANG Jianan YU Yanyan +2 位作者 CHEN Yili LI Yahe XU Nianjun 《Journal of Ocean University of China》 CAS CSCD 2024年第1期255-263,共9页
In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L... In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L:D=12:12,14:10 and 10:14),temperature(15℃(LT),25℃(MT)and 30℃(HT))and light intensity(100,200 and 400μmol m^(−2)s^(−1),noted as LL,ML and HL,respectively)conditions.Then the maturation time,spore release number and chlorophyll fluorescence were analyzed.The results suggested that:1)The spore maturation time was accelerated by higher temperature or higher light intensity from 62 h to 36 h,and changes in day length accelerated the spore maturation to a certain extent as compared with 12:12 light/dark cycle;2)Higher light intensity significantly decreased the chlorophyll fluorescence(Fv′/Fm′,NPQ,rETRmax andα)of the mature reproductive segment under 30℃with 12:12 light/dark cycle.But when in the other photoperiods(10:14 and 14:10 conditions),the inhibitory effects of high light intensity were alleviated significantly;3)The optimum condition for the spore maturation and release was 12:12 light/dark cycle,25℃,400μmol m^(−2)s^(−1),with both shorter and longer photoperiod reducing the spore release number;4)Higher light intensity significantly increased the spore release number under 25℃,but these effects were alleviated by 30℃treatment.This study is the first attempt to elucidate the coincidence effects of photoperiod,temperature and light intensity on the reproduction of Ulva,which would help to reveal the mechanism of the rapid proliferation of green tide. 展开更多
关键词 light intensity MATURATION PHOTOPERIOD REPRODUCTION TEMPERATURE Ulva prolifera
下载PDF
Efficacy of indirect intense pulsed light irradiation on meibomian gland dysfunction: a randomized controlled study
7
作者 Yu Cheng Wen-Jing Song +5 位作者 Mei-Ting Huang Yuan Gao Luo-Ying Xie Ying-Si Li Song-Lin Yang Xiao-Ming Yan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第11期2014-2022,共9页
AIM:To investigate the efficacy and mechanisms of indirect intense pulsed light(IPL)irradiation on meibomian gland dysfunction(MGD).METHODS:A total of 60 MGD patients was included in this prospective randomized contro... AIM:To investigate the efficacy and mechanisms of indirect intense pulsed light(IPL)irradiation on meibomian gland dysfunction(MGD).METHODS:A total of 60 MGD patients was included in this prospective randomized controlled trial.Patients were randomly assigned 1:1 into two groups(3-mm group and 10-mm group)in which IPL was applied at distances from the lower eyelid margin of 3 and 10 mm,respectively.Both groups received three times treatment with 3-week interval.Meibomian gland yield secretion score(MGYSS),standard patient evaluation of eye dryness(SPEED)questionnaire,tear break-up time(TBUT),corneal fluorescein staining(CFS),and in vivo confocal microscopy were performed at baseline and after every treatment.RESULTS:After three IPL treatments,both groups had significant improvement in MGYSS(both P<0.05).The noninferiority test showed that improvement in 10-mm group was not inferior to that in 3-mm group(P<0.001).In both groups,temporal regions of both upper and lower eyelids showed significant improvement in MGYSS.Scores of SPEED questionnaire in both groups declined significantly(both P<0.001)and changes of SPEED had no difference between two groups(P=0.57).Density of central corneal subepithelial nerves and TBUTs showed no statistically significant changes.The 3-mm group had improvement on corneal fluorescein staining(P=0.048)and meibomian gland morphology(acini wall thickness P=0.003,hyperreflective points P=0.024)while the 10-mm group had not.CONCLUSION:The efficacy of IPL indirect irradiation in improving meibomian gland secretion and alleviating dry eye symptoms remains unchanged with increase in treatment distance.IPL may primarily act on the functional improvement of the meibomian glands and corneal nerves. 展开更多
关键词 meibomian gland disfunction dry eye intense pulsed light ocular surface
下载PDF
Regulation of Reproduction in Delayed Gametophyte of Saccharina japonica (Laminariales, Phaeophyceae): Effects of Light Intensity, Quality and Photoperiod
8
作者 WANG Xiao LIANG Zhourui +5 位作者 LIU Fuli ZHANG Pengyan YUAN Yanmin LIU Yi WANG Wenjun SUN Xiutao 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期242-250,共9页
Saccharina japonica gametophytes can survive a long period under unfavorable environmental conditions,while they also delay in growth and/or reproduction.Although the reproduction in delayed gametophyte of S.japonica ... Saccharina japonica gametophytes can survive a long period under unfavorable environmental conditions,while they also delay in growth and/or reproduction.Although the reproduction in delayed gametophyte of S.japonica was known to be strongly influenced by light intensity,light quality,and photoperiod,no previous studies have evaluated their interactive effects on gametogenesis.To evaluate these effects,we used an orthogonal experiment to expose delayed gametophytes of S.japonica to different light intensities,light qualities,and photoperiods for 12 days.The results showed that changes in light intensity rather than light quality and photoperiod significantly affected the relative growth rates of the delayed gametophytes.Blue light had the greatest promotion on reproduction rate.The optimal light conditions in the early vegetative growth phase in gametogenesis induction for the delayed gametophytes were at 60–80μmol photons m^(−2) s^(−1) with daylength of 12 or 16 hours under white or blue light.When the delayed gametophytes were maintained in a constant light condition from delayed state to gametogenesis,the beneficial photoperiods for vegetative growth and reproductive rate were both 16L(16 hours of light):8D(8 hours of dark).However,when the delayed S.japonica gametophytes achieve the optimal growth state during the first 6 days and then they were cultured at different light conditions for the following 6 days,the reproduction rate increased as the daylength decreased and attained a peak value in group of 8L:16D photoperiod,indicating that photoperiod adjustment at the transition period is crucial in the gametogenesis induction process of delayed gametophyte of S.japonica. 展开更多
关键词 Saccharina japonica light intensity light quality PHOTOPERIOD GAMETOGENESIS vegetative growth
下载PDF
Direct measurement of the three-dimensional distribution of leaf area density and light conditions in a mature oak stand by the cube method
9
作者 Chiharu Migita Yukihiro Chiba Tanaka Kenzo 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期1817-1827,共11页
Although the distributions of foliage and light play major roles in various forest functions,accurate,nondestructive measurement of these distributions is difficult due to the complexity of the canopy structure.To eva... Although the distributions of foliage and light play major roles in various forest functions,accurate,nondestructive measurement of these distributions is difficult due to the complexity of the canopy structure.To evaluate the foliage and light distributions directly and nondestructively in a mature oak stand,we used the cube method by dividing the forest canopy into small cubes(50 cm per side)and directly measured leaf area density(LAD,the total one-sided leaf area per unit volume,i.e.,cube)and relative irradiance(RI)within each cube.The distribution of LAD and of RI was highly heterogeneous,even at the same canopy height.This heterogeneity reflected the presence of foliage clusters associated with multiple forking branches.The relationship between cumulative LAD at the canopy surface and average RI followed the Beer-Lambert law.The mean light extinction coefficient(K)was 0.32.However,K was overestimated by more than double(0.80)when calculated based on the classical method using RI at the forest floor.This overestimation was caused by the lower RI due to light absorption by nonleaf plant parts below the canopy.Our findings on the complex foliage and light distributions in canopy layers should help improve the accuracy of RI and K measurements and thus more accurate predictions of environmental responses and forest functions. 展开更多
关键词 Beer-Lambert law Canopy structure Foliage cluster Leaf area density Leaf area index Relative light intensity
下载PDF
Effects of Variable Lighting Intensity on Growth Characteristics and Nutritional Quality of Hydroponically Grown Arugula(Eruca sativa Mill.)
10
作者 Sun Ming-han Zhou Fu-jun +1 位作者 Liu He Zhao Jing 《Journal of Northeast Agricultural University(English Edition)》 CAS 2023年第1期85-96,共12页
Arugula(Eruca sativa Mill.),as an edible medicinal vegetable of peculiar flavor,is served as uncooked dish.The influence of variable lighting intensity(LI)on the growth characteristics and nutritional quality of hydro... Arugula(Eruca sativa Mill.),as an edible medicinal vegetable of peculiar flavor,is served as uncooked dish.The influence of variable lighting intensity(LI)on the growth characteristics and nutritional quality of hydroponically grown arugula was investigated by using light-emitting diodes(LEDs)to light the hydroponically grown arugula for a reference for industrialized arugula production.The dynamic demands of arugula for LI in the seedling stage,initial growth stage and vigorous growth stage were tested under two light quality conditions including a red/blue light ratio of 7:1 and a light/dark photoperiod of 12 h/12 h.Then,the curves of variable LI-induced changes in the growth indices of arugula in different development periods were drawn.Next,the influence of variable LI on the growth characteristics and nutritional quality of arugula was investigated by measuring the dry/fresh weight ratio,chlorophyll content,vitamin C content and soluble protein content.Variable LI significantly increased the height,stem diameter,leaf width,dry/fresh weight ratio,chlorophyll content and soluble protein content of arugula plant.Plant height,stem diameter,dry/fresh weight ratio,chlorophyll content and soluble protein content were the highest in the group exposed to LI of 200,300 and 300μmol•m^(-2)•s^(-1)during the seedling stage,initial growth stage and vigorous growth stage,respectively.The greatest leaf width was achieved at LI of 100,250 and 350μmol•m^(-2)•s^(-1),respectively.High intensity LI markedly repressed the synthesis of vitamin C. 展开更多
关键词 arugula LED lighting intensity growth characteristics nutritional quality plant factory
下载PDF
Effect of Light Intensity and pH on Cell Density Assessed by Spectrophotometry for the Unicellular Algae Chlorella vulgaris
11
作者 Nishat Tasnim Debabrata Karmakar +4 位作者 Rakibul Hasan Rashadul Islam Saddam Hossain Aftab Ali Shaikh Rezaul Karim 《American Journal of Plant Sciences》 CAS 2023年第4期472-481,共10页
In this study, an effective environment for Chlorella vulgaris growth is sought after. As a substitute source of food and feed, increasing the cell density of Chlorella culture is one of the keys to ensuring sustainab... In this study, an effective environment for Chlorella vulgaris growth is sought after. As a substitute source of food and feed, increasing the cell density of Chlorella culture is one of the keys to ensuring sustainability. It can be showed from different studies that optimum light intensity and pH could increase cell density. In this study, the effects of light and pH on the growth rate of C. vulgaris were observed in photobioreactor. A specific wavelength (682 nm) was determined by UV-Vis Spectrophotometry to carry out the further analysis. The light intensities were set at 7409, 9261 and 11,113 lux;pH values were set at 7, 8 and 9 respectively. The experimental results depicted the light intensity of 9261 lux as the best due to the higher number of cells (48.56 × 10<sup>6</sup> cells/mL) obtained using this intensity. In terms of pH, without pH control, cell numbers were found to be highest under the light intensity of 9261 lux. When pH was controlled, it was found that under the optimum light intensity, pH control between 7.0 and 7.5 was the optimum range for the growth of C. vulgaris. Moreover, this method of study may possibly be a promising source of low cost culture for Chlorella vulgaris. 展开更多
关键词 Chlorella vulgaris light Intensity PH Cell Density
下载PDF
The Effect of Intense Pulsed Light Treatment for Chronic Hordeolum
12
作者 YANG Ke WEN Ya +6 位作者 ZHU Lei BAO Jia Yu LI Shang WANG Ying Hui FENG Jun TIAN Lei JIE Ying 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2023年第11期1005-1014,共10页
Objective To evaluate the effect of intense pulsed light(IPL)in the treatment of chronic hordeolum.Methods Patients with chronic hordeolum who underwent IPL treatment were enrolled in this study.According to the sever... Objective To evaluate the effect of intense pulsed light(IPL)in the treatment of chronic hordeolum.Methods Patients with chronic hordeolum who underwent IPL treatment were enrolled in this study.According to the severity of hordeolum,the patients were treated with IPL 3 to 5 times.Patients’satisfaction and visual analog scale scores for ocular discomfort symptoms before and after treatment were collected.The number,congestion,long diameter,short diameter and area of nodules were also recorded and measured.Finally,eyelid margin signs,meibum quality,meibomian gland expressibility,meibomian gland dropout,tear meniscus height,and corneal fluorescein staining were scored.Results 20 patients were enrolled in this study.The eyelid margins were congestive and swollen,with blunt rounding or irregularity.The meibum was cloudy or toothpaste-like.The meibomian gland expressibility,meibomian gland dropout and tear meniscus height were reduced.The cornea showed scattered fluorescein staining.After treatment,score of visual analog scale,congestion and size of nodules were significantly reduced.Eyelid margin signs,meibum quality,meibomian gland expressibility,tear meniscus height and corneal fluorescein staining scores were improved.Meibomian gland dropout had no significant change.No side effects occurred during treatment.Conclusions IPL is beneficial for the treatment of chronic hordeolum. 展开更多
关键词 Intense pulsed light HORDEOLUM CHRONIC
下载PDF
Ecological adaptation of Eupatorium adenophorum populations to light intensity 被引量:6
13
作者 孙晓玉 陆兆华 +2 位作者 李鹏辉 姜骑山 梁震 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第2期116-120,共5页
Eupatorium adenophorum is one of main invasive plants in China and has caused great economic losses. A study was conducted to determine the biomass allocation, leaf morphology and growth response of E. adenophorum see... Eupatorium adenophorum is one of main invasive plants in China and has caused great economic losses. A study was conducted to determine the biomass allocation, leaf morphology and growth response of E. adenophorum seedlings that grew under five different intensities (relative irradiances RI 10%, 20 %, 30%, 55%, 100%) for 14 months. Results reveal that the species shows typical leaf morphological adaptation to different light conditions. The total biomass of seedlings increased with the increase of light intensity from 10% to 55% RI but decreased at RI 100% (full sunlight). Height growth increased with the increase of light intensity from 10% to 30% RI but decreased when light intensity was over 30% RI. At low light levels, plants enhanced light availability by means of increasing biomass allocation to leaves and formation of larger, thinner leaves with high specific leaf area (SLA), leading to a high leaf area ratio (LAR) and high stem strips length (SSL). The mean relative growth rate (RGR) of the plant increased with the light intensity increase and attained the maximum at 55% RI. The growth of seedlings at 30%-55% RI was much better than that at full light condition. This might be an adaptive strategy that supports the vigorous invasiveness of this species, because a high-shaded canopy could prevent other plant species from surviving and growing. This study indicates that E. adenophorum could adapt to different light conditions, especially to low light habit. This can explain its greater invasiveness. 展开更多
关键词 Ecological adaptation Eupatorium adenophorum INVASIVENESS light intensity
下载PDF
Optimal Light Intensity and Nitrogen-to-Phosphorus Ratio for Growth of Nitzschia capitellata Hust. 被引量:1
14
作者 晏妮 胡晓红 陈椽 《Agricultural Science & Technology》 CAS 2014年第3期453-456,共4页
Objective] The aim was to explore the potential of Nitzschia capitel ata as excel ent baits and bioenergy, and the optimal light intensity and nitrogen-to-phos-phorus (N/P) ratio suitable for its growth were researc... Objective] The aim was to explore the potential of Nitzschia capitel ata as excel ent baits and bioenergy, and the optimal light intensity and nitrogen-to-phos-phorus (N/P) ratio suitable for its growth were researched as wel . [Method] With light intensity gradient set, Nitzschia capitel ata was cultured with the same nutrients at (25 ±1) ℃ and light cycle at 12 h/d to select optimal light intensity. Then, Nitzschia capitel ata was cultured with the same condition, and nitrogen-to-phospho-rus ratios at 5∶1, 6∶1, 7∶1 and 8∶1. [Result] With light intensity at 3 000 lx, specific growth rate and standing stock achieved the highest at 0.51 d-1 and 7.97×104 cel s/ml. The growth condition with nitrogen-to-phosphorus ratio at 6∶1 was the most suitable for Nitzschia capitel ata growth. [Conclusion] The optimal light intensity and nitrogen-to-phosphorus ratio were 3 000 lx and 6∶1, respectively, for Nitzschia capitel ata. 展开更多
关键词 Nitzschia capitellata Hust. light intensity Specific growth rate Standingstock Nitrogen-to-phosphorus ratio
下载PDF
Impacts of bird abundance, activity height and light intensity on the number of birds captured by mist netting 被引量:2
15
作者 邹发生 陈桂珠 杨琼芳 《Chinese Birds》 2010年第4期221-229,共9页
To understand better the impact on mist net capture rates of the activity height of birds, light intensity, bird richness and abundance, we compared data from mist nets and point counts at the Jianfengling Forest Area... To understand better the impact on mist net capture rates of the activity height of birds, light intensity, bird richness and abundance, we compared data from mist nets and point counts at the Jianfengling Forest Area, Hainan Island. Mist-nets were operated for a total of 7135 net-hours. A total of 587 individuals of 45 bird species were captured. The total mean capture rate was 8.6 ± 10.4 per 100 net-hours. A total of 4932 individuals of 107 bird species were recorded by visual observation alone and 7616 individuals of 120 species were recorded in a visual and aural combination. The Grey-cheeked Fulvetta (Alcippe morrisonia) was the most abundant species, accounting for 38.7% of total captures, 27.9% of visual observations and 22.2% of visual + aural observations. The capture number was correlated with the number observed. Thirty-one species were more likely to be captured than observed. Canopy species, such as members of the Corvidae and Dicruridae, were seldom captured. For all ground feeding species, the capture number was greater than that of observation. Some cryptic species, such as the Lesser Wren Babbler (Napothera epilepidota), Spotnecked Babbler (Stachyris striolata) and Cuckoo Owl (Glaucidium cuculoides) also had a higher relative capture rate than that of observations. There was a significant relationship between light intensity and the number of birds captured. 展开更多
关键词 activity height bird abundance light intensity mist nets point counts
下载PDF
Effects of Light Intensity on Growth, Development and Formation on Fagopyrum cymosum 被引量:1
16
作者 华劲松 戴红燕 《Agricultural Science & Technology》 CAS 2014年第3期363-366,共4页
Effects of light intensity on growth, development and formation on Fagopy- rum cymosum were explored with natural light intensities at 100%(A), 85.2%(B), 75.8%(C) and 59.7%(D). The results showed that the decl... Effects of light intensity on growth, development and formation on Fagopy- rum cymosum were explored with natural light intensities at 100%(A), 85.2%(B), 75.8%(C) and 59.7%(D). The results showed that the decline of light intensity re- duced nutrient growth period, so that plant growth stage entered in advance and extended, which indicated that the decline of light intensity would lower leaf number and area, the number of twigs from the stem, as well as photosynthate. Further- more, the reduction degree increased upon light intensity decrease degree, and the proper shading improved stem height and leaf area enhanced before growth term. 展开更多
关键词 Fagopyrum cymosum light intensity Growth and development Morpho- logical characters
下载PDF
Device-measured physical activity and sedentary time in the Nordic countries:A scoping review of population-based studies
17
作者 Ing-Mari Dohrn Jakob Tarp +2 位作者 Jostein Steene-Johannessen Tommi Vasankari Maria Hagströmer 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第5期650-660,共11页
Purpose:The purpose of this scoping review was to summarize and describe the methodology and results from population-based studies of physical activity and sedentary time measured with devices in the Nordic countries(... Purpose:The purpose of this scoping review was to summarize and describe the methodology and results from population-based studies of physical activity and sedentary time measured with devices in the Nordic countries(Denmark,Finland,Iceland,Norway,and Sweden)and published in 2000 or later.Methods:A systematic search was carried out in PubMed and Web of Science in June 2023 using predefined search terms.Results:Fourteen unique research projects or surveillance studies were identified.Additionally,2 surveillance studies published by national agencies were included,resulting in a total of 16 studies for inclusion.National surveillance systems exist in Finland and Norway,with regular survey waves in school-aged children/adolescents and adults.In Denmark,recent nationally representative data have been collected in school children only.So far,Sweden has no regular national surveillance system using device-based data collection.No studies were found from Iceland.The first study was conducted in 2001 and the most recent in 2022,with most data collected from 2016 to date.Five studies included children/adole scents 6-18 years,no study included preschoolers.In total 11 studies included adults,of which 8 also covered older adults.No study focused specifically on older adults.The analytical sample size ranged from 205 to 27,890.Detailed methodology is presented,such as information on sampling strategy,device type and placement,wear protocols,and physical activity classification schemes.Levels of physical activity and sedentary time in children/adolescents,adults,and older adults across the Nordic countries are presented.Conclusion:A growing implementation of device-based population surveillance of physical activity and sedentary behavior in the Nordic countries has been identified.The variety of devices,placement,and data procedures both within and between the Nordic countries highlights the challenges when it comes to comparing study outcomes as well as the need for more standardized data collection. 展开更多
关键词 ACCELEROMETER light intensity Moderate-vigorous intensity Surveillance Wearable devices
下载PDF
Crop photosynthetic response to light quality and light intensity 被引量:25
18
作者 Iram SHAFIQ Sajad HUSSAIN +10 位作者 Muhammad Ali RAZA Nasir IQBAL Muhammad Ahsan ASGHAR Ali RAZA FAN Yuan-fang Maryam MUMTAZ Muhammad SHOAIB Muhammad ANSAR Abdul MANAF YANG Wen-yu YANG Feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第1期4-23,共20页
Under natural conditions, plants constantly encounter various biotic and abiotic factors, which can potentially restrict plant growth and development and even limit crop productivity. Among various abiotic factors aff... Under natural conditions, plants constantly encounter various biotic and abiotic factors, which can potentially restrict plant growth and development and even limit crop productivity. Among various abiotic factors affecting plant photosynthesis, light serves as an important factor that drives carbon metabolism in plants and supports life on earth. The two components of light(light quality and light intensity) greatly affect plant photosynthesis and other plant's morphological, physiological and biochemical parameters. The response of plants to different spectral radiations and intensities differs in various species and also depends on growing conditions. To date, much research has been conducted regarding how different spectral radiations of varying intensity can affect plant growth and development. This review is an effort to briefly summarize the available information on the effects of light components on various plant parameters such as stem and leaf morphology and anatomy, stomatal development, photosynthetic apparatus, pigment composition, reactive oxygen species(ROS) production, antioxidants, and hormone production. 展开更多
关键词 light intensity light quality PHOTOSYNTHESIS stomatal development pigment composition reactive oxygen species ANTIOXIDANTS plant hormones
下载PDF
Effects of light intensity on leaf microstructure and growth of rape seedlings cultivated under a combination of red and blue LEDs 被引量:18
19
作者 YAO Xu-yang LIU Xiao-ying +1 位作者 XU Zhi-gang JIAO Xue-lei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第1期97-105,共9页
The aim of this study was to evaluate the growth of rape (Brassica napus L.) seedlings under different light intensities to select appropriate conditions for cultivation in an indoor system. Seedlings were grown und... The aim of this study was to evaluate the growth of rape (Brassica napus L.) seedlings under different light intensities to select appropriate conditions for cultivation in an indoor system. Seedlings were grown under different light intensities of red and blue light provided by light-emitting diodes (LEDs) and their self-adjustment ability and changes in leaf microstructure were evaluated. Light was supplied by red LEDs with peak wavelengths of 630 (R1) and 660 nm (R2) and by blue LEDs (B) with a peak wavelength of 445 nm (the light intensity ratio of R1:R2:B was 3:3:2), at intensities of 400 (R1R2B400), 300 (R1R2B300), and 200 μmol m-2 s-1 (R1R2B200). Natural solar light served as the control (C). Plant height, stem diameter, root length, leaf area, and dry weight of rape seedlings gradually increased with increasing light intensity. The seedlings in the R1R2B400 treatment grew more vigorously, while those in the R1R2B200 treatment were weaker. The photosynthetic pigment contents did not differ significantly between the R1R2B400 treatment and C, but were significantly lower in the R1R2B300 and R1R2B200 treatments. The highest intercellular CO2concentration, stomatal conductance, and transpiration rate were in the R1R2B300 treatment. The highest photosynthetic rate was in the R1R2B400 treatment, and was related to more compact leaves, thicker and tidier palisade and spongy tissues, and well-developed chloroplasts. In contrast, the seedlings in the R1R2B200 treatment had disordered mesophyll cells, round chloroplasts, and fractured and fuzzy grana lamellae, all of which inhibited plant growth. In conclusion, the seedlings in the R1R2B400 treatment had well-developed leaves, which favored photosynthesis. Compared with the light intensities below 300 μmol m-2 s-1, the light intensity of 400 μmol m-2 s-1 provided by a cembination of red and blue LEDs was beneficial for cultivating strong and healthy rape seedlings in an artificial system. 展开更多
关键词 light intensity rape seedlings mesophyll cell CHLOROPLAST STOMATA photosynthetic characteristics
下载PDF
Effects of soil moisture and light intensity on ecophysiological characteristics of Amorpha fruticosa seedlings 被引量:9
20
作者 ZHANG Xiu-ru TAN Xiang-feng +2 位作者 WANG Ren-qing XU Nan-nan GUO Wei-hua 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第2期293-300,共8页
We investigated the combined effects of soil moisture and light intensity on the growth, development and ecophysiological characteristics of one-year old Amorpha fruticosa seedlings. Soil moisture and light intensity ... We investigated the combined effects of soil moisture and light intensity on the growth, development and ecophysiological characteristics of one-year old Amorpha fruticosa seedlings. Soil moisture and light intensity influenced the ecophysiological characteristics of Amorpha fruticosa seedlings. Soil moisture resulted in the decreases of growth rate, individual size, net photosynthetic rate, transpiration rate, leaf water loss rate (WLR), and biomass accumulation of plant parts, and led to increased leaf water saturation deficit (WSD). Under water stress, more photosynthetic products were allocated to root growth. With decreasing light intensity, net photosynthetic rate, transpiration rate, chla/b, water saturation deficit, water use efficiency, water loss rate and biomass accumulation declined, while Chla, Chlb, Chla+b and carotenoids (Car) increased and more photosynthetic products were allocated to stem and leaf growth. Maximum growth vigor, net photosynthetic rate and total biomass accumulation in Amorpha fruticosa seedlings was recorded at 75 80% soil water-holding capacity and 100% light density in greenhouse environments. 展开更多
关键词 Amorpha fruticosa ecophysiological characteristics light intensity SEEDLING soil moisture
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部