Aming at the problem of the low accuracy of low dynamic vehicle velocity under the environment of uneven distribution of light intensity,an improved adaptive Kalman filter method for the velocity error estimate by the...Aming at the problem of the low accuracy of low dynamic vehicle velocity under the environment of uneven distribution of light intensity,an improved adaptive Kalman filter method for the velocity error estimate by the fusion of optical flow tracking and scale mvaiant feature transform(SIFT)is proposed.The algorithm introduces anonlinear fuzzy membership function and the filter residual for the noise covariance matrix in the adaptive adjustment process.In the process of calculating the velocity of the vehicle,the tracking and matching of the inter-frame displacement a d the vehicle velocity calculation a e carried out by using the optical fow tracing and the SIF'T methods,respectively.Meanwhile,the velocity difference between theoutputs of thesetwo methods is used as the observation of the improved adaptive Kalman filter.Finally,the velocity calculated by the optical fow method is corrected by using the velocity error estimate of the output of the modified adaptive Kalman filter.The results of semi-physical experiments show that the maximum velocityeror of the fusion algorithm is decreased by29%than that of the optical fow method,and the computation time is reduced by80%compared with the SIFT method.展开更多
The emergent light distribution of a new type of contact laser scalpel is measured in three different states using a light sensor. The relationship between the angle and the light intensity is analyzed. The results sh...The emergent light distribution of a new type of contact laser scalpel is measured in three different states using a light sensor. The relationship between the angle and the light intensity is analyzed. The results show that the strongest light is emitted from two sides and the front of the scalpel. The light from the front mainly plays a role of cutting. The light from two sides contributes to stanch the wound so as to remain a clear visual field during the surgery. It also helps to increase the cutting efficiency.展开更多
基金The National Natural Science Foundation of China(No.51375087,51405203)the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2016139)
文摘Aming at the problem of the low accuracy of low dynamic vehicle velocity under the environment of uneven distribution of light intensity,an improved adaptive Kalman filter method for the velocity error estimate by the fusion of optical flow tracking and scale mvaiant feature transform(SIFT)is proposed.The algorithm introduces anonlinear fuzzy membership function and the filter residual for the noise covariance matrix in the adaptive adjustment process.In the process of calculating the velocity of the vehicle,the tracking and matching of the inter-frame displacement a d the vehicle velocity calculation a e carried out by using the optical fow tracing and the SIF'T methods,respectively.Meanwhile,the velocity difference between theoutputs of thesetwo methods is used as the observation of the improved adaptive Kalman filter.Finally,the velocity calculated by the optical fow method is corrected by using the velocity error estimate of the output of the modified adaptive Kalman filter.The results of semi-physical experiments show that the maximum velocityeror of the fusion algorithm is decreased by29%than that of the optical fow method,and the computation time is reduced by80%compared with the SIFT method.
基金supported by the National"973"Program of China(No.2005CB724302)the National Science Fund for Distinguished Young Scholars from the National Natural Science Foundation of China(No.60588101)+1 种基金the 111 Project from the Ministry of Education of China(B08020)the Shanghai Commission of Science and Technology(No.05DZ22318,05DZ22325,04DZ05114,and 064119540).
文摘The emergent light distribution of a new type of contact laser scalpel is measured in three different states using a light sensor. The relationship between the angle and the light intensity is analyzed. The results show that the strongest light is emitted from two sides and the front of the scalpel. The light from the front mainly plays a role of cutting. The light from two sides contributes to stanch the wound so as to remain a clear visual field during the surgery. It also helps to increase the cutting efficiency.