In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L...In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L:D=12:12,14:10 and 10:14),temperature(15℃(LT),25℃(MT)and 30℃(HT))and light intensity(100,200 and 400μmol m^(−2)s^(−1),noted as LL,ML and HL,respectively)conditions.Then the maturation time,spore release number and chlorophyll fluorescence were analyzed.The results suggested that:1)The spore maturation time was accelerated by higher temperature or higher light intensity from 62 h to 36 h,and changes in day length accelerated the spore maturation to a certain extent as compared with 12:12 light/dark cycle;2)Higher light intensity significantly decreased the chlorophyll fluorescence(Fv′/Fm′,NPQ,rETRmax andα)of the mature reproductive segment under 30℃with 12:12 light/dark cycle.But when in the other photoperiods(10:14 and 14:10 conditions),the inhibitory effects of high light intensity were alleviated significantly;3)The optimum condition for the spore maturation and release was 12:12 light/dark cycle,25℃,400μmol m^(−2)s^(−1),with both shorter and longer photoperiod reducing the spore release number;4)Higher light intensity significantly increased the spore release number under 25℃,but these effects were alleviated by 30℃treatment.This study is the first attempt to elucidate the coincidence effects of photoperiod,temperature and light intensity on the reproduction of Ulva,which would help to reveal the mechanism of the rapid proliferation of green tide.展开更多
Saccharina japonica gametophytes can survive a long period under unfavorable environmental conditions,while they also delay in growth and/or reproduction.Although the reproduction in delayed gametophyte of S.japonica ...Saccharina japonica gametophytes can survive a long period under unfavorable environmental conditions,while they also delay in growth and/or reproduction.Although the reproduction in delayed gametophyte of S.japonica was known to be strongly influenced by light intensity,light quality,and photoperiod,no previous studies have evaluated their interactive effects on gametogenesis.To evaluate these effects,we used an orthogonal experiment to expose delayed gametophytes of S.japonica to different light intensities,light qualities,and photoperiods for 12 days.The results showed that changes in light intensity rather than light quality and photoperiod significantly affected the relative growth rates of the delayed gametophytes.Blue light had the greatest promotion on reproduction rate.The optimal light conditions in the early vegetative growth phase in gametogenesis induction for the delayed gametophytes were at 60–80μmol photons m^(−2) s^(−1) with daylength of 12 or 16 hours under white or blue light.When the delayed gametophytes were maintained in a constant light condition from delayed state to gametogenesis,the beneficial photoperiods for vegetative growth and reproductive rate were both 16L(16 hours of light):8D(8 hours of dark).However,when the delayed S.japonica gametophytes achieve the optimal growth state during the first 6 days and then they were cultured at different light conditions for the following 6 days,the reproduction rate increased as the daylength decreased and attained a peak value in group of 8L:16D photoperiod,indicating that photoperiod adjustment at the transition period is crucial in the gametogenesis induction process of delayed gametophyte of S.japonica.展开更多
Afifella marina strain ME (KC205142), a purple non-sulfur bacterium was isolated from mangrove habitats of Sabah. The effects of light intensities and photoperiods on proteolytic activity in Afifella marina strain ME ...Afifella marina strain ME (KC205142), a purple non-sulfur bacterium was isolated from mangrove habitats of Sabah. The effects of light intensities and photoperiods on proteolytic activity in Afifella marina strain ME (KC205142) were investigated. Secretion of proteolytic enzymes in Afifella marina was preliminarily assessed by skim milk agarose media. Subsequently, light intensities, such as, dark, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500 and 5000 lux were used to evaluate the effects on proteolytic activity in Afifella marina strain ME under anaerobic condition. After that, the effect of photoperiods on proteolytic activity was monitored under anaerobic light condition (3000 lux) at 0 h (0L/24D), 6 h (6L/18D), 12 h (12L/12D), 18 h (18L/6D) and 24 h (24L/0D) of photoperiod. The highest proteolytic activity of 74.67 U was recorded at 3000 lux illumination light intensity. The proteolytic activity in bacterium Afifella marina strain ME was positively associated with the dry cell weight. The proteolytic activity of 72.67 U in bacterium Afifella marina strain ME at 18 h (18L/6D) photoperiod is not significantly different (p > 0.05) from proteolytic activity of 74.67 U recorded at continuous light (24L/0D) condition. Light intensity of 3000 lux, culture period of 48 h and a photoperiod of 18 h (18L/ 6D) were the optimum parameters for proteolytic activity in bacterium Afifella marina strain ME.展开更多
We collected centric diatom Stephanopyxis palmeriana samples in coastal waters of Xiamen for charac- teristic red light/far red light (R/FR) phytochrome reactions to identify its photoreceptor in the course of sexual ...We collected centric diatom Stephanopyxis palmeriana samples in coastal waters of Xiamen for charac- teristic red light/far red light (R/FR) phytochrome reactions to identify its photoreceptor in the course of sexual repro- duction. The result showed that pre-illumination of 2-3h red light before darkness could induce sexualization of S. palmeriana, while the follow-up illumination of far red light could reverse the effect of red light, which is a featured reaction of phytochrome. The Southern Dot Blot was carried out to identify the type of phytochrome that induces the sexualization. The result also showed high homogeneity of DNA fragment of S. palmeriana with phyB, but phyA. This means the photoreceptor in the process of sexual reproduction of S. palmeriana is phytochrome B (phyB).展开更多
Light is an essential natural factor of fish growth and development.A light regime in indoor aquaculture is critical for sustainable fish production.This research aimed to investigate the effect of light intensity and...Light is an essential natural factor of fish growth and development.A light regime in indoor aquaculture is critical for sustainable fish production.This research aimed to investigate the effect of light intensity and photoperiod on the growth performance and stress response of Nile tilapia(Oreochromis niloticus),which is an important commercial species,in a recirculating aquaculture system(RAS).Fingerlings with an average weight of 5±0.9 g were randomly assigned to nine 1.5 m3 tanks with 145 fish in each tank,cultured under different light intensities(1000,2000,and 3000 lx)and photoperiods(12L:12D,18L:6D,24L:0D),and fed to apparent satiation twice a day for 160 days.The growth of tilapia subjected to 2000 lx was significantly better than that exposed to 1000 and 3000 lx(P<0.05)as indicated by the final weight(351.17±10.59 g),growth efficiency(0.77±0.26),specific growth rate(2.65%±0.21%per day)and feed conversion coefficient ratio(1.30±0.36).No significant difference was observed in the growth rate among different photoperiod groups(P>0.05).Light intensity and photoperiod manipulation did not cause a significant chronic stress response in tilapia.This study demonstrated that light intensity,especially at 2000 lx,and photoperiod manipulation could stimulate the growth of tilapia in the RAS and significantly affect economic profitability.This study also served as an important reference for tilapia indoor aquaculture.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(No.LY23D060003)the Key Program of Science and Technology Innovation in Ningbo(2021Z114,2023Z118)sponsored by K.C.Wong Magna Fund in Ningbo University.
文摘In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L:D=12:12,14:10 and 10:14),temperature(15℃(LT),25℃(MT)and 30℃(HT))and light intensity(100,200 and 400μmol m^(−2)s^(−1),noted as LL,ML and HL,respectively)conditions.Then the maturation time,spore release number and chlorophyll fluorescence were analyzed.The results suggested that:1)The spore maturation time was accelerated by higher temperature or higher light intensity from 62 h to 36 h,and changes in day length accelerated the spore maturation to a certain extent as compared with 12:12 light/dark cycle;2)Higher light intensity significantly decreased the chlorophyll fluorescence(Fv′/Fm′,NPQ,rETRmax andα)of the mature reproductive segment under 30℃with 12:12 light/dark cycle.But when in the other photoperiods(10:14 and 14:10 conditions),the inhibitory effects of high light intensity were alleviated significantly;3)The optimum condition for the spore maturation and release was 12:12 light/dark cycle,25℃,400μmol m^(−2)s^(−1),with both shorter and longer photoperiod reducing the spore release number;4)Higher light intensity significantly increased the spore release number under 25℃,but these effects were alleviated by 30℃treatment.This study is the first attempt to elucidate the coincidence effects of photoperiod,temperature and light intensity on the reproduction of Ulva,which would help to reveal the mechanism of the rapid proliferation of green tide.
基金financially supported by the National Key R&D Program of China(Nos.2018YFD0900305,2018YFD 0901500)the China Agriculture Research System of MOF and MARA,Central Public-interest Scientific Institution Basal Research Fund CAFS(No.2020TD27)the‘Young Talent of Fishery Sciences’project from Laboratory for Marine Fisheries and Aquaculture(No.2018-MFS-T12).
文摘Saccharina japonica gametophytes can survive a long period under unfavorable environmental conditions,while they also delay in growth and/or reproduction.Although the reproduction in delayed gametophyte of S.japonica was known to be strongly influenced by light intensity,light quality,and photoperiod,no previous studies have evaluated their interactive effects on gametogenesis.To evaluate these effects,we used an orthogonal experiment to expose delayed gametophytes of S.japonica to different light intensities,light qualities,and photoperiods for 12 days.The results showed that changes in light intensity rather than light quality and photoperiod significantly affected the relative growth rates of the delayed gametophytes.Blue light had the greatest promotion on reproduction rate.The optimal light conditions in the early vegetative growth phase in gametogenesis induction for the delayed gametophytes were at 60–80μmol photons m^(−2) s^(−1) with daylength of 12 or 16 hours under white or blue light.When the delayed gametophytes were maintained in a constant light condition from delayed state to gametogenesis,the beneficial photoperiods for vegetative growth and reproductive rate were both 16L(16 hours of light):8D(8 hours of dark).However,when the delayed S.japonica gametophytes achieve the optimal growth state during the first 6 days and then they were cultured at different light conditions for the following 6 days,the reproduction rate increased as the daylength decreased and attained a peak value in group of 8L:16D photoperiod,indicating that photoperiod adjustment at the transition period is crucial in the gametogenesis induction process of delayed gametophyte of S.japonica.
文摘Afifella marina strain ME (KC205142), a purple non-sulfur bacterium was isolated from mangrove habitats of Sabah. The effects of light intensities and photoperiods on proteolytic activity in Afifella marina strain ME (KC205142) were investigated. Secretion of proteolytic enzymes in Afifella marina was preliminarily assessed by skim milk agarose media. Subsequently, light intensities, such as, dark, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500 and 5000 lux were used to evaluate the effects on proteolytic activity in Afifella marina strain ME under anaerobic condition. After that, the effect of photoperiods on proteolytic activity was monitored under anaerobic light condition (3000 lux) at 0 h (0L/24D), 6 h (6L/18D), 12 h (12L/12D), 18 h (18L/6D) and 24 h (24L/0D) of photoperiod. The highest proteolytic activity of 74.67 U was recorded at 3000 lux illumination light intensity. The proteolytic activity in bacterium Afifella marina strain ME was positively associated with the dry cell weight. The proteolytic activity of 72.67 U in bacterium Afifella marina strain ME at 18 h (18L/6D) photoperiod is not significantly different (p > 0.05) from proteolytic activity of 74.67 U recorded at continuous light (24L/0D) condition. Light intensity of 3000 lux, culture period of 48 h and a photoperiod of 18 h (18L/ 6D) were the optimum parameters for proteolytic activity in bacterium Afifella marina strain ME.
基金Supported by National Natural Science Foundation of China (No. 39670076)
文摘We collected centric diatom Stephanopyxis palmeriana samples in coastal waters of Xiamen for charac- teristic red light/far red light (R/FR) phytochrome reactions to identify its photoreceptor in the course of sexual repro- duction. The result showed that pre-illumination of 2-3h red light before darkness could induce sexualization of S. palmeriana, while the follow-up illumination of far red light could reverse the effect of red light, which is a featured reaction of phytochrome. The Southern Dot Blot was carried out to identify the type of phytochrome that induces the sexualization. The result also showed high homogeneity of DNA fragment of S. palmeriana with phyB, but phyA. This means the photoreceptor in the process of sexual reproduction of S. palmeriana is phytochrome B (phyB).
基金This study was funded by the China-ASEAN Maritime Cooperation Fund(China-ASEAN Center for Joint Research and Promotion of Marine Aquaculture Technology,No:DF)and China Postdoctoral Science Foundation Funded Project(Project No:2018M641984)。
文摘Light is an essential natural factor of fish growth and development.A light regime in indoor aquaculture is critical for sustainable fish production.This research aimed to investigate the effect of light intensity and photoperiod on the growth performance and stress response of Nile tilapia(Oreochromis niloticus),which is an important commercial species,in a recirculating aquaculture system(RAS).Fingerlings with an average weight of 5±0.9 g were randomly assigned to nine 1.5 m3 tanks with 145 fish in each tank,cultured under different light intensities(1000,2000,and 3000 lx)and photoperiods(12L:12D,18L:6D,24L:0D),and fed to apparent satiation twice a day for 160 days.The growth of tilapia subjected to 2000 lx was significantly better than that exposed to 1000 and 3000 lx(P<0.05)as indicated by the final weight(351.17±10.59 g),growth efficiency(0.77±0.26),specific growth rate(2.65%±0.21%per day)and feed conversion coefficient ratio(1.30±0.36).No significant difference was observed in the growth rate among different photoperiod groups(P>0.05).Light intensity and photoperiod manipulation did not cause a significant chronic stress response in tilapia.This study demonstrated that light intensity,especially at 2000 lx,and photoperiod manipulation could stimulate the growth of tilapia in the RAS and significantly affect economic profitability.This study also served as an important reference for tilapia indoor aquaculture.