A fast 3D reconstruction method based on structured light to measure various parameters of the raceway groove is presented. Digital parallel grating stripes distributed with sine density are projected onto the raceway...A fast 3D reconstruction method based on structured light to measure various parameters of the raceway groove is presented. Digital parallel grating stripes distributed with sine density are projected onto the raceway groove by a DLP projector, and distorting of stripes is happened on the raceway. Simultaneously, aided by three-step phase-shifting approach, three images covered by different stripes are obtained by a high-resolution CCD camera at the same location, thus a more accuracy local topography can be obtained. And then the bearing is rotated on a high precision computer controlled rotational stage. Three images are also obtained as the former step at next planned location triggered by the motor. After one cycle, all images information is combined through the mosaics. As a result, the 3D information of raceway groove can be gained. Not only geometric properties but also surface flaws can be extracted by software. A preliminary hardware system has been built, with which some geometric parameters have been extracted from reconstructed local topography.展开更多
Currently, daylighting ducts system is widely used as a daylighting device. Generally, daylighting duct system efficiently takes light from outside during the day, and conveys daylight to required location through lig...Currently, daylighting ducts system is widely used as a daylighting device. Generally, daylighting duct system efficiently takes light from outside during the day, and conveys daylight to required location through light duct manufactured by high reflectance mirror. Daylighting duct system can convey daylight to underground space that has no windows opening to external space. Daylighting system is composed of light collection part, light guide part and light emission part. Efficiency of daylighting system is depending on type of each part used in the system. However, it is very difficult to estimate exact light flow in the system considering type of the parts. Authors performed measurement experiments to make clear the light flow with real-size model and miniature model of daylighting duct system. We discussed effect of type of the parts on efficiency of daylighting duct system.展开更多
Support SMEs Increase the scale of financial supports at various levels to support SMEs, sustain light & textile projects with promising market prospect, notable driving of employment and remarkable social benefit...Support SMEs Increase the scale of financial supports at various levels to support SMEs, sustain light & textile projects with promising market prospect, notable driving of employment and remarkable social benefits, and step up investments in construction of credit guarantee system and service展开更多
Phase unwrapping is one of the key roles in fringe projection three-dimensional(3D)measurement technology.We propose a new method to achieve phase unwrapping in camera array light filed fringe projection 3D measuremen...Phase unwrapping is one of the key roles in fringe projection three-dimensional(3D)measurement technology.We propose a new method to achieve phase unwrapping in camera array light filed fringe projection 3D measurement based on deep learning.A multi-stream convolutional neural network(CNN)is proposed to learn the mapping relationship between camera array light filed wrapped phases and fringe orders of the expected central view,and is used to predict the fringe order to achieve the phase unwrapping.Experiments are performed on the light field fringe projection data generated by the simulated camera array fringe projection measurement system in Blender and by the experimental 3×3 camera array light field fringe projection system.The performance of the proposed network with light field wrapped phases using multiple directions as network input data is studied,and the advantages of phase unwrapping based on deep learning in light filed fringe projection are demonstrated.展开更多
A novel no-guide light pen type 3D-coordinate measurement system with three sets of position sensitive devices (PSDs) to realize intersection converge imaging is introduced. It is called as the light pen type measurem...A novel no-guide light pen type 3D-coordinate measurement system with three sets of position sensitive devices (PSDs) to realize intersection converge imaging is introduced. It is called as the light pen type measurement system, because the measuring head is shaped as a pen with several light sources on it. The structure design, measurement principle and experimental results are presented. The theoretical analysis and experimental results prove that this system has advanced features of simple structure, high automation, and high accuracy, and can be used in the measurement fields of mechanical manufacture, robot, auto, aviation and medicine effectively.展开更多
A new equation to measure the refractive index of extraordinary ray in uniaxial crystal with the optic axis at an arbitrary orientation has been given in this letter, and the term in this equation makes the measuremen...A new equation to measure the refractive index of extraordinary ray in uniaxial crystal with the optic axis at an arbitrary orientation has been given in this letter, and the term in this equation makes the measurements to be relatively easy. The theoretical study shows that the accuracy achieved in the experiments attains to the order of magnitude in 10^-3. .展开更多
There is an increasing demand on the measurable velocity of laser interferometer in manufacturing technologies. The maximum measurable velocity is limited by frequency difference of laser source, optical configuration...There is an increasing demand on the measurable velocity of laser interferometer in manufacturing technologies. The maximum measurable velocity is limited by frequency difference of laser source, optical configuration, and electronics bandwidth. An experimental setup based on free falling movement has been demonstrated to measure the maximum measurable velocity for interferometers. Measurement results show that the maximum measurable velocity is less than its theoretical value. Moreover, the effect of kinds of factors upon the measurement results is analyzed, and the results can offer a reference for industrial applications.展开更多
We measure the electromagnetic degree of temporal coherence and the associated coherence time for quasi-monochromatic unpolarized light beams emitted by an LED, a filtered halogen lamp, and a multimode He–Ne laser.Th...We measure the electromagnetic degree of temporal coherence and the associated coherence time for quasi-monochromatic unpolarized light beams emitted by an LED, a filtered halogen lamp, and a multimode He–Ne laser.The method is based on observing at the output of a Michelson interferometer the visibilities(contrasts) of the intensity and polarization-state modulations expressed in terms of the Stokes parameters. The results are in good agreement with those deduced directly from the source spectra. The measurements are repeated after passing the beams through a linear polarizer so as to elucidate the role of polarization in electromagnetic coherence. While the polarizer varies the equal-time degree of coherence consistently with the theoretical predictions and alters the inner structure of the coherence matrix, the coherence time remains almost unchanged when the light varies from unpolarized to polarized. The results are important in the areas of applications dealing with physical optics and electromagnetic interference.展开更多
In this Letter, a refractive index measurement of a dielectric sample using highly focused radially polarized light is reported. Through imaging analysis of the optical field at the pupil plane of a high numerical ape...In this Letter, a refractive index measurement of a dielectric sample using highly focused radially polarized light is reported. Through imaging analysis of the optical field at the pupil plane of a high numerical aperture (NA) objective lens reflected by the sample under study, the Brewster angle is found. Employing a high NA objective lens allows the measurement of multiple angles of incidence from 0° to 64° in a single shot. The refractive index of the sample is estimated using the measured Brewster angle. The experimental results are compared with the theoretical images computed with the Fresnel theory, and a good agreement is obtained.展开更多
Using a measurement system based on fluorescence induced by variable pulse light, photosynthesis parameters of chlorella pyrenoidosa are obtained, employing single-turnover and multiple-turnover protocols under darkad...Using a measurement system based on fluorescence induced by variable pulse light, photosynthesis parameters of chlorella pyrenoidosa are obtained, employing single-turnover and multiple-turnover protocols under darkadapted and light-adapted conditions. Under the light-adapted condition,σ’PSII is larger, and F’v/F’m(ST) and F’v/F’m(MT) are smaller than those of the dark-adapted condition, but the corresponding parameters possess good linear correlations.Fm(MT), F’m(MT), Fv/Fm(MT) and F’v/F’m(MT) which are measured using the multipleturnover protocol, are larger than those of the single-turnover protocol. The linear correlation coefficient between Fm(ST) and Fm(MT) is 0.984,and Fv/Fm(MT) = 1.18 Fv/Fm(ST) The linear correlation coefficient between F’m(ST) and F’m(MT) is 0.995, and F’v/F’m(MT) = 1.36 F’v/F’m/(ST).展开更多
A new method for testing aspheric surfaces by annular subaperture stitching interferometry is introduced. It can test large-aperture and large-relative-aperture aspheric surfaces at high resolution, low cost, and high...A new method for testing aspheric surfaces by annular subaperture stitching interferometry is introduced. It can test large-aperture and large-relative-aperture aspheric surfaces at high resolution, low cost, and high efficiency without auxiliary null optics. The basic principle of the method is described, the synthetical optimization stitching model and effective algorithm are established based on simultaneous least-square fitting. A hyperboloid with an aperture of 350 mm is tested by this method. The obtained peak-to-valley (PV) and root-mean-square (RMS) values of the surface error after stitching are 0.433A and 0.052A (A is 632.8 nm), respectively. The reconstructed surface map is coincide with the entire surface map from null test, and the difference of PV and RMS errors between them are 0.031A and 0.005A, respectively. This stitching model provides another quantitive method for testing large aspheric surfaces besides null compensation.展开更多
Single photon counting imaging technology has been widely used in space environment detection, astronomy observation, nuclear physics, and ultraweak bioluminescence. However, the distortion of the single photon counti...Single photon counting imaging technology has been widely used in space environment detection, astronomy observation, nuclear physics, and ultraweak bioluminescence. However, the distortion of the single photon counting image will badly affect the measurement results. Therefore, the correction of distortion for single photon counting image is very significant. Ultraviolet single photon imaging system with wedge and strip anode is introduced and the influence factor leading to image distortion is analyzed. To correct original distorted image, three different image correction methods, namely, the physical correction, the global correction, and the local correction, are applied. In addition, two parameters, i.e., the position index and the linearity index, are defined to evaluate the performance of the three methods. The results suggest that the correction methods can improve the quality of the initial image without losing gray information of each counting light spot. And the local correction can provide the best visual inspections and performance evaluation among the three methods.展开更多
A novel and precise micron-scale nanosecond laser spot measurement based on film-scanning method is presented. The method can be used to measure the spot size, beam profile, and intensity distribution of the pulse. Th...A novel and precise micron-scale nanosecond laser spot measurement based on film-scanning method is presented. The method can be used to measure the spot size, beam profile, and intensity distribution of the pulse. The central spot radius of the pulsed Bessel beams with pulse width of 25 ns is measured to be 94.86 ± 5 μm in our experiment through the analysis of the digital image by film scanning, and the result is consistent with the theoretical value of 92.33 μm. Compared with charge-coupled device/complementary metal oxide semiconductor (CCD/CMOS) laser beam profilers, the film-scanning method shows higher measurement accuracy, single shot ultrashort pulse measurable, larger measurable size, and wider measurable wavelength range.展开更多
The dynamical equation of a trapping cell is solved to find calibration methods for the trapping force, and two methods are compared by synthetic experiment data. Results indicate that: Boltzmann distribution method ...The dynamical equation of a trapping cell is solved to find calibration methods for the trapping force, and two methods are compared by synthetic experiment data. Results indicate that: Boltzmann distribution method (BDM) is available for the force calibration of non-spherical or anisotropic cells in arbitrary trap potential; the mean square displacement method (MSDM) is available only for a symmetric harmonic optical trap. The spatial resolution requirement of the calibration system is about a nanometer. The results agree with the reported experiments.展开更多
Shrinking of critical dimensions (CDs) in semiconductor circuits has been pushing optical lithography to print features smaller than the wavelength of light source. The demand for CD control is ever-increasing. In t...Shrinking of critical dimensions (CDs) in semiconductor circuits has been pushing optical lithography to print features smaller than the wavelength of light source. The demand for CD control is ever-increasing. In this paper, the study is conducted to reveal the impact of illumination pupil filling ellipticity on CD uniformity. As main parameters of CD uniformity, horizontal-vertical feature bias (H-V bias) and isolateddense feature bias (I-D bias) caused by pupil filling ellipticity are calculated using the PROLITH software under four different illumination settings. Simulation shows that H-V bias and I-D bias are proportional to the pupil filling ellipticity. The slopes of the fitting lines of the H-V bias versus pupil filling ellipticity are calculated.展开更多
A gain-scheduled feedforward controller, based on pseudo-LIDAR (light detection and ranging) wind speed measurement, is designed to augment the baseline feedback controller for wind turbine's load reduction in abov...A gain-scheduled feedforward controller, based on pseudo-LIDAR (light detection and ranging) wind speed measurement, is designed to augment the baseline feedback controller for wind turbine's load reduction in above rated operation. The pseudo-LIDAR measurement data are generated from a commercial software- Bladed using a designed sampling strategy. The nonlinear wind turbine model has been simplified and linearised at a set of equilibrium operating points. The feedforward controller is firstly developed based on a linearised model at an above rated wind speed, and then expanded to the full above rated operational envelope by employing gain scheduling strategy. The combined feedforward and baseline feedback control is simulated on a 5MW industrial wind turbine model. Simulation studies demonstrate that the proposed control strategy can improve the rotor and tower load reduction performance for large wind turbines.展开更多
A new three-dimensional (3D) optical fluorescent tomographic imaging scheme is proposed with structured illumination and spatial Fourier-domain decomposition methods for the first time. In this spatial Fourierdecomp...A new three-dimensional (3D) optical fluorescent tomographic imaging scheme is proposed with structured illumination and spatial Fourier-domain decomposition methods for the first time. In this spatial Fourierdecomposition optical fluorescence tomography (SF-OFT), the intensity of focused excitation light from an objective lens is modulated to be a cosine function along the optical axis of the system. For a given position in a two-dimensional (2D) raster scanning process, the spatial frequency of the cosine function along the optical axis sweeps in a proper range while a series of fluorescence intensity are detected accordingly. By making an inverse discrete cosine transformation of these recorded intensity profiles, the distribution of fluorescent markers along the optical axis of a focused laser beam is obtained. A 3D optical fluorescent tomography can be achieved with this proposed SF-OFT technique with a simple 2D raster scanning process.展开更多
The cavity ring-down (CRD) technique is adopted for simultaneously measuring s- and p-polarization reflectivity of highly reflective coatings without employing any polarization optics. As the s- and p-polarized ligh...The cavity ring-down (CRD) technique is adopted for simultaneously measuring s- and p-polarization reflectivity of highly reflective coatings without employing any polarization optics. As the s- and p-polarized light trapped in the ring-down cavity decay independently, with a randomly polarized light source the ring-down signal recorded by a photodetector presents a double-exponential waveform consisting of ring-down signals of both s- and p-polarized light. The s- and p-polarization reflectivity values of a test mirror are therefore simultaneously determined by fitting the recorded ring-down signal with a double-exponential function. The determined s- and p-polarization reflectivity of 30° and 45° angle of incidence mirrors are in good agreement with the reflectivity values measured with the conventional CRD technique employing a polarizer for polarization control.展开更多
In this paper, we use a recent works [5], where the authors provide a new ap-proach for pseudo almost periodic solution under the measure theory, under Acquistpace-Terreni conditions, we make extensive use of interpol...In this paper, we use a recent works [5], where the authors provide a new ap-proach for pseudo almost periodic solution under the measure theory, under Acquistpace-Terreni conditions, we make extensive use of interpolation spaces and exponential di-chotomy techniques to obtain the existence of μ-pseudo almost periodic solutions tosome classes of nonautonomous partial evolution equations.展开更多
基金This project is supported by National Natural Science Foundation ofChina (No.50375047).
文摘A fast 3D reconstruction method based on structured light to measure various parameters of the raceway groove is presented. Digital parallel grating stripes distributed with sine density are projected onto the raceway groove by a DLP projector, and distorting of stripes is happened on the raceway. Simultaneously, aided by three-step phase-shifting approach, three images covered by different stripes are obtained by a high-resolution CCD camera at the same location, thus a more accuracy local topography can be obtained. And then the bearing is rotated on a high precision computer controlled rotational stage. Three images are also obtained as the former step at next planned location triggered by the motor. After one cycle, all images information is combined through the mosaics. As a result, the 3D information of raceway groove can be gained. Not only geometric properties but also surface flaws can be extracted by software. A preliminary hardware system has been built, with which some geometric parameters have been extracted from reconstructed local topography.
文摘Currently, daylighting ducts system is widely used as a daylighting device. Generally, daylighting duct system efficiently takes light from outside during the day, and conveys daylight to required location through light duct manufactured by high reflectance mirror. Daylighting duct system can convey daylight to underground space that has no windows opening to external space. Daylighting system is composed of light collection part, light guide part and light emission part. Efficiency of daylighting system is depending on type of each part used in the system. However, it is very difficult to estimate exact light flow in the system considering type of the parts. Authors performed measurement experiments to make clear the light flow with real-size model and miniature model of daylighting duct system. We discussed effect of type of the parts on efficiency of daylighting duct system.
文摘Support SMEs Increase the scale of financial supports at various levels to support SMEs, sustain light & textile projects with promising market prospect, notable driving of employment and remarkable social benefits, and step up investments in construction of credit guarantee system and service
基金the National Natural Science Foundation of China(No.61905178)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(No.2019KJ021)the Natural Science Foundation of Tianjin(No.18JCQNJC71100)。
文摘Phase unwrapping is one of the key roles in fringe projection three-dimensional(3D)measurement technology.We propose a new method to achieve phase unwrapping in camera array light filed fringe projection 3D measurement based on deep learning.A multi-stream convolutional neural network(CNN)is proposed to learn the mapping relationship between camera array light filed wrapped phases and fringe orders of the expected central view,and is used to predict the fringe order to achieve the phase unwrapping.Experiments are performed on the light field fringe projection data generated by the simulated camera array fringe projection measurement system in Blender and by the experimental 3×3 camera array light field fringe projection system.The performance of the proposed network with light field wrapped phases using multiple directions as network input data is studied,and the advantages of phase unwrapping based on deep learning in light filed fringe projection are demonstrated.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 59875066. X. Zhang's e-mail address is zhangxf@eyou.com.
文摘A novel no-guide light pen type 3D-coordinate measurement system with three sets of position sensitive devices (PSDs) to realize intersection converge imaging is introduced. It is called as the light pen type measurement system, because the measuring head is shaped as a pen with several light sources on it. The structure design, measurement principle and experimental results are presented. The theoretical analysis and experimental results prove that this system has advanced features of simple structure, high automation, and high accuracy, and can be used in the measurement fields of mechanical manufacture, robot, auto, aviation and medicine effectively.
文摘A new equation to measure the refractive index of extraordinary ray in uniaxial crystal with the optic axis at an arbitrary orientation has been given in this letter, and the term in this equation makes the measurements to be relatively easy. The theoretical study shows that the accuracy achieved in the experiments attains to the order of magnitude in 10^-3. .
基金This work was supported by the Optical Science & Technology Project of Shanghai Municipal Science and Technology Commission under Grant No.022261052.
文摘There is an increasing demand on the measurable velocity of laser interferometer in manufacturing technologies. The maximum measurable velocity is limited by frequency difference of laser source, optical configuration, and electronics bandwidth. An experimental setup based on free falling movement has been demonstrated to measure the maximum measurable velocity for interferometers. Measurement results show that the maximum measurable velocity is less than its theoretical value. Moreover, the effect of kinds of factors upon the measurement results is analyzed, and the results can offer a reference for industrial applications.
文摘We measure the electromagnetic degree of temporal coherence and the associated coherence time for quasi-monochromatic unpolarized light beams emitted by an LED, a filtered halogen lamp, and a multimode He–Ne laser.The method is based on observing at the output of a Michelson interferometer the visibilities(contrasts) of the intensity and polarization-state modulations expressed in terms of the Stokes parameters. The results are in good agreement with those deduced directly from the source spectra. The measurements are repeated after passing the beams through a linear polarizer so as to elucidate the role of polarization in electromagnetic coherence. While the polarizer varies the equal-time degree of coherence consistently with the theoretical predictions and alters the inner structure of the coherence matrix, the coherence time remains almost unchanged when the light varies from unpolarized to polarized. The results are important in the areas of applications dealing with physical optics and electromagnetic interference.
基金GLM and VMRB acknowledge CONACYT-M6xico for the scholarship 353317 and 394565, respectively, which were given to them to do their graduate studies.
文摘In this Letter, a refractive index measurement of a dielectric sample using highly focused radially polarized light is reported. Through imaging analysis of the optical field at the pupil plane of a high numerical aperture (NA) objective lens reflected by the sample under study, the Brewster angle is found. Employing a high NA objective lens allows the measurement of multiple angles of incidence from 0° to 64° in a single shot. The refractive index of the sample is estimated using the measured Brewster angle. The experimental results are compared with the theoretical images computed with the Fresnel theory, and a good agreement is obtained.
基金supported by the Natural Science Foundation of Anhui Province(No.1708085QD87)the Open Fund of Qingdao National Laboratory for Marine Science and Technology(No.QNLM2016ORP0312)+2 种基金the Natural Science Foundation of Higher Education Institutions of Anhui Province(Nos.KJ2017A530 and KJ2016A594)the National Key Research and Development Plan(No.2016YFC1400602)the Natural Science Foundation of China(No.31400317)
文摘Using a measurement system based on fluorescence induced by variable pulse light, photosynthesis parameters of chlorella pyrenoidosa are obtained, employing single-turnover and multiple-turnover protocols under darkadapted and light-adapted conditions. Under the light-adapted condition,σ’PSII is larger, and F’v/F’m(ST) and F’v/F’m(MT) are smaller than those of the dark-adapted condition, but the corresponding parameters possess good linear correlations.Fm(MT), F’m(MT), Fv/Fm(MT) and F’v/F’m(MT) which are measured using the multipleturnover protocol, are larger than those of the single-turnover protocol. The linear correlation coefficient between Fm(ST) and Fm(MT) is 0.984,and Fv/Fm(MT) = 1.18 Fv/Fm(ST) The linear correlation coefficient between F’m(ST) and F’m(MT) is 0.995, and F’v/F’m(MT) = 1.36 F’v/F’m/(ST).
文摘A new method for testing aspheric surfaces by annular subaperture stitching interferometry is introduced. It can test large-aperture and large-relative-aperture aspheric surfaces at high resolution, low cost, and high efficiency without auxiliary null optics. The basic principle of the method is described, the synthetical optimization stitching model and effective algorithm are established based on simultaneous least-square fitting. A hyperboloid with an aperture of 350 mm is tested by this method. The obtained peak-to-valley (PV) and root-mean-square (RMS) values of the surface error after stitching are 0.433A and 0.052A (A is 632.8 nm), respectively. The reconstructed surface map is coincide with the entire surface map from null test, and the difference of PV and RMS errors between them are 0.031A and 0.005A, respectively. This stitching model provides another quantitive method for testing large aspheric surfaces besides null compensation.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences.
文摘Single photon counting imaging technology has been widely used in space environment detection, astronomy observation, nuclear physics, and ultraweak bioluminescence. However, the distortion of the single photon counting image will badly affect the measurement results. Therefore, the correction of distortion for single photon counting image is very significant. Ultraviolet single photon imaging system with wedge and strip anode is introduced and the influence factor leading to image distortion is analyzed. To correct original distorted image, three different image correction methods, namely, the physical correction, the global correction, and the local correction, are applied. In addition, two parameters, i.e., the position index and the linearity index, are defined to evaluate the performance of the three methods. The results suggest that the correction methods can improve the quality of the initial image without losing gray information of each counting light spot. And the local correction can provide the best visual inspections and performance evaluation among the three methods.
基金the National Natural Science Foundation of China(No.60477041)the Natural Science Foundation of Fujian Province.P.R.China(No.A0710011 and A0410017).
文摘A novel and precise micron-scale nanosecond laser spot measurement based on film-scanning method is presented. The method can be used to measure the spot size, beam profile, and intensity distribution of the pulse. The central spot radius of the pulsed Bessel beams with pulse width of 25 ns is measured to be 94.86 ± 5 μm in our experiment through the analysis of the digital image by film scanning, and the result is consistent with the theoretical value of 92.33 μm. Compared with charge-coupled device/complementary metal oxide semiconductor (CCD/CMOS) laser beam profilers, the film-scanning method shows higher measurement accuracy, single shot ultrashort pulse measurable, larger measurable size, and wider measurable wavelength range.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 60378018 and 60578026.
文摘The dynamical equation of a trapping cell is solved to find calibration methods for the trapping force, and two methods are compared by synthetic experiment data. Results indicate that: Boltzmann distribution method (BDM) is available for the force calibration of non-spherical or anisotropic cells in arbitrary trap potential; the mean square displacement method (MSDM) is available only for a symmetric harmonic optical trap. The spatial resolution requirement of the calibration system is about a nanometer. The results agree with the reported experiments.
基金This work was supported by the National "863" Program of China under Grant No. 2002AA4Z3000.
文摘Shrinking of critical dimensions (CDs) in semiconductor circuits has been pushing optical lithography to print features smaller than the wavelength of light source. The demand for CD control is ever-increasing. In this paper, the study is conducted to reveal the impact of illumination pupil filling ellipticity on CD uniformity. As main parameters of CD uniformity, horizontal-vertical feature bias (H-V bias) and isolateddense feature bias (I-D bias) caused by pupil filling ellipticity are calculated using the PROLITH software under four different illumination settings. Simulation shows that H-V bias and I-D bias are proportional to the pupil filling ellipticity. The slopes of the fitting lines of the H-V bias versus pupil filling ellipticity are calculated.
基金supported by UK Engineering and Physical Sciences Research Council(EPSRC)Supergen Wind project(No.EP/N006224/1)
文摘A gain-scheduled feedforward controller, based on pseudo-LIDAR (light detection and ranging) wind speed measurement, is designed to augment the baseline feedback controller for wind turbine's load reduction in above rated operation. The pseudo-LIDAR measurement data are generated from a commercial software- Bladed using a designed sampling strategy. The nonlinear wind turbine model has been simplified and linearised at a set of equilibrium operating points. The feedforward controller is firstly developed based on a linearised model at an above rated wind speed, and then expanded to the full above rated operational envelope by employing gain scheduling strategy. The combined feedforward and baseline feedback control is simulated on a 5MW industrial wind turbine model. Simulation studies demonstrate that the proposed control strategy can improve the rotor and tower load reduction performance for large wind turbines.
基金Creative Research Initiatives(3D Nano Optical Imaging System Research Group)of MOST/KOSEF.
文摘A new three-dimensional (3D) optical fluorescent tomographic imaging scheme is proposed with structured illumination and spatial Fourier-domain decomposition methods for the first time. In this spatial Fourierdecomposition optical fluorescence tomography (SF-OFT), the intensity of focused excitation light from an objective lens is modulated to be a cosine function along the optical axis of the system. For a given position in a two-dimensional (2D) raster scanning process, the spatial frequency of the cosine function along the optical axis sweeps in a proper range while a series of fluorescence intensity are detected accordingly. By making an inverse discrete cosine transformation of these recorded intensity profiles, the distribution of fluorescent markers along the optical axis of a focused laser beam is obtained. A 3D optical fluorescent tomography can be achieved with this proposed SF-OFT technique with a simple 2D raster scanning process.
文摘The cavity ring-down (CRD) technique is adopted for simultaneously measuring s- and p-polarization reflectivity of highly reflective coatings without employing any polarization optics. As the s- and p-polarized light trapped in the ring-down cavity decay independently, with a randomly polarized light source the ring-down signal recorded by a photodetector presents a double-exponential waveform consisting of ring-down signals of both s- and p-polarized light. The s- and p-polarization reflectivity values of a test mirror are therefore simultaneously determined by fitting the recorded ring-down signal with a double-exponential function. The determined s- and p-polarization reflectivity of 30° and 45° angle of incidence mirrors are in good agreement with the reflectivity values measured with the conventional CRD technique employing a polarizer for polarization control.
文摘In this paper, we use a recent works [5], where the authors provide a new ap-proach for pseudo almost periodic solution under the measure theory, under Acquistpace-Terreni conditions, we make extensive use of interpolation spaces and exponential di-chotomy techniques to obtain the existence of μ-pseudo almost periodic solutions tosome classes of nonautonomous partial evolution equations.