We experimentally demonstrate a novel ghost imaging experiment utilizing a classical light source, capable of resolving objects with a high visibility. The experimental results show that our scheme can indeed realize ...We experimentally demonstrate a novel ghost imaging experiment utilizing a classical light source, capable of resolving objects with a high visibility. The experimental results show that our scheme can indeed realize ghost imaging with high visibility for a relatively complicated object composed of three near-ellipse-shaped holes with different dimensions. In our experiment, the largest hole is -36 times of the smMlest one in area. Each of the three holes exhibits high-visibility in excess of 80%. The high visibility and high spatial-resolution advantages of this technique could have applications in remote sensing.展开更多
Severe air pollution with visibility deterioration has long been a focus in the North China Plain(NCP).In this study,concentration and light extinction analysis of PM_(2.5)chemical components were carried out from 201...Severe air pollution with visibility deterioration has long been a focus in the North China Plain(NCP).In this study,concentration and light extinction analysis of PM_(2.5)chemical components were carried out from 2014 to 2017 to study the pollution characteristics in Baoding,a case city of the NCP.The annual average concentration of total PM_(2.5)components showed a declining trend,decreasing by 11μg m^(−3)(water-soluble inorganic ions),23μg m^(−3)(carbonaceous aerosols),and 1796 ng m^(−3)(inorganic elements).Contributing 82.9%to the concentration of total ions,the dominant components,NH 4+,NO 3−,and SO_(4)^(2−)became the main pollutants in PM_(2.5)pollution.Based on the IMPROVE algorithm,the average reconstructed PM_(2.5)mass concentration was 93±69μg m^(−3)during the observation period.Meanwhile,the light extinction coefficients were 373.8±233.6 M^(m−1),405.3±300.1M^(m−1),554.3±378.2M^(m−1)and 1005.2±750.3M^(m−1),in spring,summer,autumn,and winter,respectively.Ammonium sulfate,ammonium nitrate,and organic matter were the largest contributors to light extinction,accounting for a total of 55%–77%in the four seasons.The b sca(light scattering by particles and gases)reconstructed from PM_(2.5)components(Rb_(sca))and the b sca converted from visibility(Vb_(sca))were compared to evaluate the performance of the IMPROVE algorithm,revealing a high correlation coefficient of 0.84.The high values of Vb_(sca)were underestimated while the low values were overestimated,as determined through comparison with the one-to-ne line.Especially,when Rb_(sca)>1123M^(m−1)(corresponding to<2.0 km,approximately),Vb_(sca)was underestimated by 17.6%.PM_(2.5)mass concentration and relative humidity also had an impact on the estimation.展开更多
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed...To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.展开更多
Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This pap...Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.展开更多
Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and har...Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.展开更多
We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before i...We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before is employed as a light source. The main problem encountered by the 2D lensless ghost imaging with true thermal light is that its coherence time is much shorter than the resolution time of the detection system. To overcome this difficulty we derive a method based on the relationship between the true and measured values of the second-order optical intensity correlation, by which means the visibility of the ghost image can be dramatically enhanced. This method would also be suitable for ghost imaging with natural sunlight.展开更多
Visibility is an evaluation index for road lighting, which comprehensively influences the vision reliability of drivers and is a key factor for road lighting safety and energy saving. This paper introduces the concept...Visibility is an evaluation index for road lighting, which comprehensively influences the vision reliability of drivers and is a key factor for road lighting safety and energy saving. This paper introduces the concept of road lighting visibility and its influencing factors. It also explains the small target visibility calculation model for road lighting design, and describes the significance of establishing urban road lighting visibility standards from a point of view of visual function and visual comfort of drivers.展开更多
Novel Bi2MoO6/TiO2 heterojunction was fabricated by growing Bi2MoO6 nanosheets arrays on the vertically aligned TiO2 nanorods arrays via a two-step solvothermal method. The obtained Bi2MoO6/TiO2 hierarchical heterojun...Novel Bi2MoO6/TiO2 heterojunction was fabricated by growing Bi2MoO6 nanosheets arrays on the vertically aligned TiO2 nanorods arrays via a two-step solvothermal method. The obtained Bi2MoO6/TiO2 hierarchical heterojunction showed excellent visible light photoelectrochemical performance. Compared with the pure TiO2 and Bi2MoO6, the photocurrent density of the heterojunction was increased 57 and 29 times, respectively. Furthermore, the hydrogen generation rate of the Bi2MoO6/TiO2 for photoelectrocatalytic water-splitting was about 6 times higher than that of the pure Bi2MoO6. The improved performance can be attributed to the synergistic effects of enhanced absorption of visible light, increase of migration rate and separation efficiency of photo-induced carriers.展开更多
Au nanoparticle-decorated TiO2 nanotube arrays are prepared by a simple method, which is a thermal annealing thin gold film deposited on anodie oxidized TiO2 nanotube arrays. These electron microscope images present t...Au nanoparticle-decorated TiO2 nanotube arrays are prepared by a simple method, which is a thermal annealing thin gold film deposited on anodie oxidized TiO2 nanotube arrays. These electron microscope images present that Au nanoparticles are well dispersed within the wall and on the surface of the XiO2 nanotubes. Meanwhile, the morphologies of Au nanoparticles can be controlled by changing the thickness of the deposited gold film. Associ- ated with the excitation of localized surface plasmon resonances, the prepared Au nanoparticle-decorated TiO2 nanotube arrays could work as visible light responsive photocatalysts to produce a greatly enhanced photocurrent density. By varying the initial gold film thickness, such Au nanoparticle-decorated TiO2 nanotube arrays could be optimized to obtain the highest photocurrent generation efficiency in the visible and UV light regions.展开更多
In this paper,the channel capacity of the multiple-input multiple-output(MIMO)visible light communication(VLC)system is investigated under the peak,average optical and electrical power constraints.Finding the channel ...In this paper,the channel capacity of the multiple-input multiple-output(MIMO)visible light communication(VLC)system is investigated under the peak,average optical and electrical power constraints.Finding the channel capacity of MIMO VLC is shown to be a mixed integer programming problem.To address this open problem,we propose an inexact gradient projection method to find the channel capacity-achieving discrete input distribution and the channel capacity of MIMO VLC.Also we derive both upper and lower bounds of the capacity of MIMO VLC with the closed-form expressions.Furthermore,by considering practical discrete constellation inputs,we develop the optimal power allocation scheme to maximize transmission rate of MIMO VLC system.Simulation results show that more discrete points are needed to achieve the channel capacity as SNR increases.Both the upper and lower bounds of channel capacity are tight at low SNR region.In addition,comparing the equal power allocation,the proposed power allocation scheme can significantly increase the rate for the low-order modulation inputs.展开更多
Photocatalytic removal of tetracycline(TC)from the wastewater is of great value in the chemical and environmental engineering field.Here,we introduced a facile one-step method for the synthesis of BiOBr/Bi2WO6 heteroj...Photocatalytic removal of tetracycline(TC)from the wastewater is of great value in the chemical and environmental engineering field.Here,we introduced a facile one-step method for the synthesis of BiOBr/Bi2WO6 heterojunctions by using cheap CTAB as the Br source.We showed the possibility of our method to fine-tune the content of BiOBr in the produced BiOBr/Bi2WO6 by simply changing the dosage of cetyltrimethylammonium bromide(CTAB),providing a platform for the delicate tuning of the visiblelight absorbance ability of the composites.With a suitable heterojunction structure of BiOBr/Bi2WO6-0.2,it exhibited an ultrarapid photocatalytic activity towards TC(20 mgL^(-1)),with a competitive removal efficiency of 88.1%within 60 min and an ultrahigh removal rate of 0.0349 min^(-1).It could also be robustly recycled for at least 5 cycles with slight removal efficiency loss.We demonstrated that this exciting photocatalytic performance was due to the highly decreased recombination of photoinduced electrons and holes on our composites by constructing this heterojunction structure,and the resultingOH andO^(-)_(2)contributed to the effective degradation of TC to CO_(2).展开更多
A scheme for fourth-order double-slit ghost interference with a pseudo-thermal light source is proposed. It is shown that not only can the visibility be dramatically enhanced compared to the third-order case, but also...A scheme for fourth-order double-slit ghost interference with a pseudo-thermal light source is proposed. It is shown that not only can the visibility be dramatically enhanced compared to the third-order case, but also higher resolution is demonstrated if we scan two of three reference detectors in opposite directions with the same speed, meanwhile another two in identical directions where the speed of one reference detector is twice the other. The results show that the visibility and resolution improvement of the fourth-order ghost interference fringe can be applied to the Nth-order ghost imaging.展开更多
Visible light(VL)plays an important role in achieving high-precision positioning and low bit error radio(BER)data communication.However,most VL-based systems can not achieve positioning and communication,simultaneousl...Visible light(VL)plays an important role in achieving high-precision positioning and low bit error radio(BER)data communication.However,most VL-based systems can not achieve positioning and communication,simultaneously.There are two problems:1)the hybrid systems are difficult to extract distinguishable positioning beacon features without affecting communication performance,2)in the hybrid systems,the lost data bits in the inter-frame gap(IFG)are hard to recover,which affects positioning and communication performance.Therefore,in this article,we propose a novel VL-based hybrid positioning and communication system,named HY-PC system,to solve the above problems.First,we propose the robust T-W mapping for recognizing specific Light Emitting Diodes(LEDs),which can provide stable LED recognition accuracy without adding extra beacon data and does not decrease the communication rate.Furthermore,we also propose the novel linear block coding and bit interleaving mechanism,which can recover the lost data bits in the IFG and improve data communication performance.Finally,we use commercial off-the-shelf devices to implement our HY-PC system,extensive experimental results show that our HY-PC system can achieve consistent high-precision positioning and low-BER data communication,simultaneously.展开更多
When there is an increasing interest in visible light communication(VLC), outdoor vehicle VLC has emerged as a promising candidate technology for future intelligent transportation systems. However, in VLC based vehicu...When there is an increasing interest in visible light communication(VLC), outdoor vehicle VLC has emerged as a promising candidate technology for future intelligent transportation systems. However, in VLC based vehicular applications, several challenges impede successful commercial application of VLC based products. This article first provides a thorough overview of the existing challenges. To overcome these challenges, we propose a novel architecture with tracking and environment sensing ability for practical vehicular applications. Moreover, a proof-ofconcept prototype is implemented to validate the feasibility of the proposed system. Experimental and simulation results show that the proposed VLC system can provide reliable communications with a bit-error rate less than 10-4for vehicles under strong interference lights. Finally, based on the evaluations, we propose some key design issues for future studies in this research area.展开更多
Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for ...Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for industrial implementations are in scarcity,areas concerning illumination optimisation and communication performances demand further investigation.As such,this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances.The proposed model was evaluated based on various semi-angles at half power(SAAHP)and different height levels for several parameters,including received power,signal to noise ratio(SNR),and bit error rate(BER).The results revealed improvement in terms of received power and SNR with 30 Mbps data rate.Various modulations were studied to improve the link quality,whereby better average BER values of 5.55×10^(−15) and 1.06×10^(−10) had been achieved with 4 PAM and 8 PPM,respectively.The simulation outcomes are indeed viable for the practical warehouse model.展开更多
In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two probl...In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two problems:(1)When the captured LED disappears and the uncertain LED reappears,existing tracking algorithms may recognize the landmark in error;(2)The receiver is not always able to achieve positioning under various moving statuses.In this paper,we propose an enhanced visual target tracking algorithm to solve the above problems.First,we design the lightweight recognition/demodulation mechanism,which combines Kalman filtering with simple image preprocessing to quickly track and accurately demodulate the landmark.Then,we use the Gaussian mixture model and the LED color feature to enable the system to achieve positioning,when the receiver is under various moving statuses.Experimental results show that our system can achieve high-precision dynamic positioning and improve the system’s comprehensive performance.展开更多
Visible Light Communication(VLC)technology is aggressive research for the next generation of communication.Currently,Radio Frequency(RF)communication has crowed spectrum.An Intelligent Transportation System(ITS)has be...Visible Light Communication(VLC)technology is aggressive research for the next generation of communication.Currently,Radio Frequency(RF)communication has crowed spectrum.An Intelligent Transportation System(ITS)has been improved in the communication network for Vehicle-to-Vehicle(V2 V),Vehicle-to-Infrastructure(V2I),and Infrastructure-to-Vehicle(I2V)by using the visible light spectrum instead of the RF spectrum.This article studies the characterization of Line-of-Sight(LOS)optical performance in an Outdoor Wireless Visible Light Communication(OWVLC)system employing a Multiple-Input Multiple-Output(MIMO)technique for I2V communications in ITS regulations.We design the new configuration of the OWVLC-I2V system,which is an alternative approach to communication for I2V system at nighttime.The results show the Channel Impulse Response(CIR)of the LOS links in visible light communication for I2V system in ITS by investigating the receiver on the vehicle moving along the coverage communication area.Furthermore,the OWVLC-I2V system using the MIMO technique depicts the performance of throughput and Bit Error Rate(BER)vs.vehicle speed while the vehicle passes a street light.展开更多
Fe_(3)O_(4)and Cu_(2)O were successively immobilized on alkali-treated straw,and the magnetically separable straw@Fe_(3)O_(4)/Cu_(2)O composite was obtained.The straw@Fe_(3)O_(4)/Cu_(2)O was characterized by Fourier t...Fe_(3)O_(4)and Cu_(2)O were successively immobilized on alkali-treated straw,and the magnetically separable straw@Fe_(3)O_(4)/Cu_(2)O composite was obtained.The straw@Fe_(3)O_(4)/Cu_(2)O was characterized by Fourier transform infrared spectroscopy,X-ray diffraction,scanning electron microscopy,X-ray photoelectron spectroscopy and vibrating sample magnetometry,respectively.Photocatalytic performance of the straw@Fe_(3)O_(4)/Cu_(2)O was evaluated by measuring the degradation of methyl orange(MO)under irradiation of visible light.The introduction of Fe3O4 not only endowed the straw@Fe_(3)O_(4)/Cu_(2)O with magnetic separation feature but also significantly enhanced photocatalytic activity because Fe3O4 could prevent recombination of hole-electron pairs.The active species capture experiment showed that holes(h+),hydroxyl(∙OH)and superoxide(∙O2ˉ)radicals all took part in the MO degradation.In addition,the photocatalytic mechanism of straw@Fe_(3)O_(4)/Cu_(2)O was proposed based on the experimental results.After five cycles for the photodegradation of MO,the straw@Fe_(3)O_(4)/Cu_(2)O still displayed good photocatalytic activity,suggesting that the as-prepared composite had great potential for practical use in wastewater treatment.展开更多
Yellow light-emitting diodes(LEDs) as soft light have attracted abundant attention in lithography room, museum and art gallery. However, the development of efficient yellow LEDs lags behind green and blue LEDs, and th...Yellow light-emitting diodes(LEDs) as soft light have attracted abundant attention in lithography room, museum and art gallery. However, the development of efficient yellow LEDs lags behind green and blue LEDs, and the available perovskites yellow LEDs suffer from the instability. Herein, a pressure-assisted cooling method is proposed to grow lead-free CsCu2I3single crystals, which possess uniform surface morphology and enhanced photoluminescence quantum yield(PLQY) stability, with only 10% PLQY losses after being stored in air after 5000 h.Then, the single crystals used for yellow LEDs without encapsulation exhibit a decent Correlated Color Temperature(CCT) of 4290 K, a Commission Internationale de l’Eclairage(CIE) coordinate of(0.38, 0.41), and an excellent 570-h operating stability under heating temperature of 100°C. Finally, the yellow LEDs facilitate the application in wireless visible light communication(VLC), which show a-3 dB bandwidth of 21.5 MHz and a high achievable data rate of 219.2 Mbps by using orthogonal frequency division multiplexing(OFDM) modulation with adaptive bit loading. The present work not only promotes the development of lead-free single crystals, but also inspires the potential of CsCu2I3in the field of yellow illumination and wireless VLC.展开更多
Radio waves and strong magneticfields are used by Magnetic Reso-nance Imaging(MRI)scanners to detect tumours,wounds and visualize detailed images of the human body.Wi-Fi and other medical devices placed in the MRI pro...Radio waves and strong magneticfields are used by Magnetic Reso-nance Imaging(MRI)scanners to detect tumours,wounds and visualize detailed images of the human body.Wi-Fi and other medical devices placed in the MRI procedure room produces RF noise in MRI Images.The RF noise is the result of electromagnetic emissions produced by Wi-Fi and other medical devices that interfere with the operation of the MRI scanner.Existing techniques for RF noise mitigation involve RF shielding techniques which induce eddy currents that affect the MRI image quality.RF shielding techniques are complex and lead to RF leak-age.VLC(Visible light Communication)is an emerging and efficient technology to avoid RF interference near MRI scanners.Range augmentation with power conservation of the LED is a big challenge in existing VLC systems.The major objective of the proposed work is to develop an intelligent-MRI room design without RF interference using visible light communication and enhance the distance between VLC transmitter and VLC receiver.In this paper,it is proposed to implement VLC using On-Off keying modulation and enhance distance using large active area photodiodes with Automatic Gain Control Circuit(AGC)using software and hardware.The performance of the proposed intelligent MRI-VLC system is analyzed by calculating Bit Error Rate at an inclined distance of 50 cm away from line of sight of the LED.The Experimental results showed that the maximum distance achieved was 400 cm at Bit Error Rate(BER)of 1.5×10^(-5).展开更多
基金Supported by the National Basic Research Program of China under Grant No 2012CB921900the National Natural Science Foundation of China under Grant Nos 11534006,11274183 and 11374166the National Scientific Instrument and Equipment Development Project under Grant No 2012YQ17004
文摘We experimentally demonstrate a novel ghost imaging experiment utilizing a classical light source, capable of resolving objects with a high visibility. The experimental results show that our scheme can indeed realize ghost imaging with high visibility for a relatively complicated object composed of three near-ellipse-shaped holes with different dimensions. In our experiment, the largest hole is -36 times of the smMlest one in area. Each of the three holes exhibits high-visibility in excess of 80%. The high visibility and high spatial-resolution advantages of this technique could have applications in remote sensing.
基金supported by the National Key Research and Development Program of China grant number 2016YFC0202001the Chinese Academy of Sciences Strategic Priority Research Program grant number XDA23020301+1 种基金the National Natural Science Foundation of China grant numbers 41375036 and 91644226the National Key Research and Development Program of China grant number2018YFC0214002。
文摘Severe air pollution with visibility deterioration has long been a focus in the North China Plain(NCP).In this study,concentration and light extinction analysis of PM_(2.5)chemical components were carried out from 2014 to 2017 to study the pollution characteristics in Baoding,a case city of the NCP.The annual average concentration of total PM_(2.5)components showed a declining trend,decreasing by 11μg m^(−3)(water-soluble inorganic ions),23μg m^(−3)(carbonaceous aerosols),and 1796 ng m^(−3)(inorganic elements).Contributing 82.9%to the concentration of total ions,the dominant components,NH 4+,NO 3−,and SO_(4)^(2−)became the main pollutants in PM_(2.5)pollution.Based on the IMPROVE algorithm,the average reconstructed PM_(2.5)mass concentration was 93±69μg m^(−3)during the observation period.Meanwhile,the light extinction coefficients were 373.8±233.6 M^(m−1),405.3±300.1M^(m−1),554.3±378.2M^(m−1)and 1005.2±750.3M^(m−1),in spring,summer,autumn,and winter,respectively.Ammonium sulfate,ammonium nitrate,and organic matter were the largest contributors to light extinction,accounting for a total of 55%–77%in the four seasons.The b sca(light scattering by particles and gases)reconstructed from PM_(2.5)components(Rb_(sca))and the b sca converted from visibility(Vb_(sca))were compared to evaluate the performance of the IMPROVE algorithm,revealing a high correlation coefficient of 0.84.The high values of Vb_(sca)were underestimated while the low values were overestimated,as determined through comparison with the one-to-ne line.Especially,when Rb_(sca)>1123M^(m−1)(corresponding to<2.0 km,approximately),Vb_(sca)was underestimated by 17.6%.PM_(2.5)mass concentration and relative humidity also had an impact on the estimation.
文摘To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61975072 and 12174173)the Natural Science Foundation of Fujian Province,China (Grant Nos.2022H0023,2022J02047,ZZ2023J20,and 2022G02006)。
文摘Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.
基金supported by the National Natural Science Foundation of China(No.61772386)National Key Research and Development Project(No.2018YFB1305001)Fundamental Research Funds for the Central Universities(No.KJ02072021-0119).
文摘Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11204117,11304007,and 60907031)the China Postdoctoral Science Foundation(Grant No.2013M540146)+1 种基金the Fund from the Education Department of Liaoning Province,China(Grant No.L2012001)the National HiTech Research and Development Program of China(Grant No.2013AA122902)
文摘We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before is employed as a light source. The main problem encountered by the 2D lensless ghost imaging with true thermal light is that its coherence time is much shorter than the resolution time of the detection system. To overcome this difficulty we derive a method based on the relationship between the true and measured values of the second-order optical intensity correlation, by which means the visibility of the ghost image can be dramatically enhanced. This method would also be suitable for ghost imaging with natural sunlight.
基金supported by the National Natural Science Foundation of China (Grant No. 50878217)
文摘Visibility is an evaluation index for road lighting, which comprehensively influences the vision reliability of drivers and is a key factor for road lighting safety and energy saving. This paper introduces the concept of road lighting visibility and its influencing factors. It also explains the small target visibility calculation model for road lighting design, and describes the significance of establishing urban road lighting visibility standards from a point of view of visual function and visual comfort of drivers.
基金This work was supported by the National Natural Science Foundation of China (No.U1632273).
文摘Novel Bi2MoO6/TiO2 heterojunction was fabricated by growing Bi2MoO6 nanosheets arrays on the vertically aligned TiO2 nanorods arrays via a two-step solvothermal method. The obtained Bi2MoO6/TiO2 hierarchical heterojunction showed excellent visible light photoelectrochemical performance. Compared with the pure TiO2 and Bi2MoO6, the photocurrent density of the heterojunction was increased 57 and 29 times, respectively. Furthermore, the hydrogen generation rate of the Bi2MoO6/TiO2 for photoelectrocatalytic water-splitting was about 6 times higher than that of the pure Bi2MoO6. The improved performance can be attributed to the synergistic effects of enhanced absorption of visible light, increase of migration rate and separation efficiency of photo-induced carriers.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474215 and 21204058the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Au nanoparticle-decorated TiO2 nanotube arrays are prepared by a simple method, which is a thermal annealing thin gold film deposited on anodie oxidized TiO2 nanotube arrays. These electron microscope images present that Au nanoparticles are well dispersed within the wall and on the surface of the XiO2 nanotubes. Meanwhile, the morphologies of Au nanoparticles can be controlled by changing the thickness of the deposited gold film. Associ- ated with the excitation of localized surface plasmon resonances, the prepared Au nanoparticle-decorated TiO2 nanotube arrays could work as visible light responsive photocatalysts to produce a greatly enhanced photocurrent density. By varying the initial gold film thickness, such Au nanoparticle-decorated TiO2 nanotube arrays could be optimized to obtain the highest photocurrent generation efficiency in the visible and UV light regions.
基金supported by the Graduate Innovation Program of China University of Mining and Technology (2022WLKXJ016)in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province (KYCX222549)+3 种基金supported by Shaanxi Provincial Natural Science Foundation of China (2023-JC-YB-510)the Fundamental Research Funds for the Central Universities,CHD (300102322103)supported in part by Natural Science Foundation of Jiangsu Province (BK20200488)supported in part by Challenge Cup National Student Curricular Academic Science and Technology Works Competition (DCXM202212)。
文摘In this paper,the channel capacity of the multiple-input multiple-output(MIMO)visible light communication(VLC)system is investigated under the peak,average optical and electrical power constraints.Finding the channel capacity of MIMO VLC is shown to be a mixed integer programming problem.To address this open problem,we propose an inexact gradient projection method to find the channel capacity-achieving discrete input distribution and the channel capacity of MIMO VLC.Also we derive both upper and lower bounds of the capacity of MIMO VLC with the closed-form expressions.Furthermore,by considering practical discrete constellation inputs,we develop the optimal power allocation scheme to maximize transmission rate of MIMO VLC system.Simulation results show that more discrete points are needed to achieve the channel capacity as SNR increases.Both the upper and lower bounds of channel capacity are tight at low SNR region.In addition,comparing the equal power allocation,the proposed power allocation scheme can significantly increase the rate for the low-order modulation inputs.
基金the National Natural Science Foundation of China(Grant No.22108040 and 21878054)the Natural Science Foundation of Fujian Province(2020J05130)+1 种基金Science and Technology Project of Fujian Educational Committee(JAT190051)Research Project of Ningde Normal University(2019T03).
文摘Photocatalytic removal of tetracycline(TC)from the wastewater is of great value in the chemical and environmental engineering field.Here,we introduced a facile one-step method for the synthesis of BiOBr/Bi2WO6 heterojunctions by using cheap CTAB as the Br source.We showed the possibility of our method to fine-tune the content of BiOBr in the produced BiOBr/Bi2WO6 by simply changing the dosage of cetyltrimethylammonium bromide(CTAB),providing a platform for the delicate tuning of the visiblelight absorbance ability of the composites.With a suitable heterojunction structure of BiOBr/Bi2WO6-0.2,it exhibited an ultrarapid photocatalytic activity towards TC(20 mgL^(-1)),with a competitive removal efficiency of 88.1%within 60 min and an ultrahigh removal rate of 0.0349 min^(-1).It could also be robustly recycled for at least 5 cycles with slight removal efficiency loss.We demonstrated that this exciting photocatalytic performance was due to the highly decreased recombination of photoinduced electrons and holes on our composites by constructing this heterojunction structure,and the resultingOH andO^(-)_(2)contributed to the effective degradation of TC to CO_(2).
基金Supported by the National Basic Research Program of China under Grant No 2012CB921804the National Natural Science Foundation of China under Grant Nos 61078002,61078020,11104214,61108017,11104216 and 61205112+2 种基金the Research Funds for the Doctoral Program of Higher Education of China under Grant Nos 20110201110006,20110201120005 and 20100201120031the Fundamental Research Funds for the Central Universities of Ministry of Education of China under Grant Nos 2012jdhz05,2011jdhz07,xjj2011083,xjj2011084,xjj2012080 and xjj2013089the China Postdoctoral Science Foundation under Grant No2012M521773
文摘A scheme for fourth-order double-slit ghost interference with a pseudo-thermal light source is proposed. It is shown that not only can the visibility be dramatically enhanced compared to the third-order case, but also higher resolution is demonstrated if we scan two of three reference detectors in opposite directions with the same speed, meanwhile another two in identical directions where the speed of one reference detector is twice the other. The results show that the visibility and resolution improvement of the fourth-order ghost interference fringe can be applied to the Nth-order ghost imaging.
基金supported by the Guangdong Basic and Applied Basic Research Foundation No.2021A1515110958National Natural Science Foundation of China No.62202215+2 种基金SYLU introduced high-level talents scientific research support planChongqing University Innovation Research Group(CXQT21019)Chongqing Talents Project(CQYC201903048)。
文摘Visible light(VL)plays an important role in achieving high-precision positioning and low bit error radio(BER)data communication.However,most VL-based systems can not achieve positioning and communication,simultaneously.There are two problems:1)the hybrid systems are difficult to extract distinguishable positioning beacon features without affecting communication performance,2)in the hybrid systems,the lost data bits in the inter-frame gap(IFG)are hard to recover,which affects positioning and communication performance.Therefore,in this article,we propose a novel VL-based hybrid positioning and communication system,named HY-PC system,to solve the above problems.First,we propose the robust T-W mapping for recognizing specific Light Emitting Diodes(LEDs),which can provide stable LED recognition accuracy without adding extra beacon data and does not decrease the communication rate.Furthermore,we also propose the novel linear block coding and bit interleaving mechanism,which can recover the lost data bits in the IFG and improve data communication performance.Finally,we use commercial off-the-shelf devices to implement our HY-PC system,extensive experimental results show that our HY-PC system can achieve consistent high-precision positioning and low-BER data communication,simultaneously.
基金supported by the Key Technology Research Project of Jiangxi Province(20213AAE01007)National Natural Science Foundation of China(61871047,61901047)the Proof-of-concept project of Zhongguancun Open Laboratory under Grant(202103001)。
文摘When there is an increasing interest in visible light communication(VLC), outdoor vehicle VLC has emerged as a promising candidate technology for future intelligent transportation systems. However, in VLC based vehicular applications, several challenges impede successful commercial application of VLC based products. This article first provides a thorough overview of the existing challenges. To overcome these challenges, we propose a novel architecture with tracking and environment sensing ability for practical vehicular applications. Moreover, a proof-ofconcept prototype is implemented to validate the feasibility of the proposed system. Experimental and simulation results show that the proposed VLC system can provide reliable communications with a bit-error rate less than 10-4for vehicles under strong interference lights. Finally, based on the evaluations, we propose some key design issues for future studies in this research area.
基金supported by Professional Development Research University Grant(UTM Vot No.06E59).
文摘Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for industrial implementations are in scarcity,areas concerning illumination optimisation and communication performances demand further investigation.As such,this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances.The proposed model was evaluated based on various semi-angles at half power(SAAHP)and different height levels for several parameters,including received power,signal to noise ratio(SNR),and bit error rate(BER).The results revealed improvement in terms of received power and SNR with 30 Mbps data rate.Various modulations were studied to improve the link quality,whereby better average BER values of 5.55×10^(−15) and 1.06×10^(−10) had been achieved with 4 PAM and 8 PPM,respectively.The simulation outcomes are indeed viable for the practical warehouse model.
基金supported by the Guangdong Basic and Applied Basic Research Foundation No.2021A1515110958National Natural Science Foundation of China No.62202215+1 种基金SYLU introduced high-level talents scientific research support plan,Chongqing University Innovation Research Group(CXQT21019)Chongqing Talents Project(CQYC201903048)。
文摘In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two problems:(1)When the captured LED disappears and the uncertain LED reappears,existing tracking algorithms may recognize the landmark in error;(2)The receiver is not always able to achieve positioning under various moving statuses.In this paper,we propose an enhanced visual target tracking algorithm to solve the above problems.First,we design the lightweight recognition/demodulation mechanism,which combines Kalman filtering with simple image preprocessing to quickly track and accurately demodulate the landmark.Then,we use the Gaussian mixture model and the LED color feature to enable the system to achieve positioning,when the receiver is under various moving statuses.Experimental results show that our system can achieve high-precision dynamic positioning and improve the system’s comprehensive performance.
基金supported in part by the Ministry of Higher Education,Science and Research Innovation of Thailand.
文摘Visible Light Communication(VLC)technology is aggressive research for the next generation of communication.Currently,Radio Frequency(RF)communication has crowed spectrum.An Intelligent Transportation System(ITS)has been improved in the communication network for Vehicle-to-Vehicle(V2 V),Vehicle-to-Infrastructure(V2I),and Infrastructure-to-Vehicle(I2V)by using the visible light spectrum instead of the RF spectrum.This article studies the characterization of Line-of-Sight(LOS)optical performance in an Outdoor Wireless Visible Light Communication(OWVLC)system employing a Multiple-Input Multiple-Output(MIMO)technique for I2V communications in ITS regulations.We design the new configuration of the OWVLC-I2V system,which is an alternative approach to communication for I2V system at nighttime.The results show the Channel Impulse Response(CIR)of the LOS links in visible light communication for I2V system in ITS by investigating the receiver on the vehicle moving along the coverage communication area.Furthermore,the OWVLC-I2V system using the MIMO technique depicts the performance of throughput and Bit Error Rate(BER)vs.vehicle speed while the vehicle passes a street light.
基金Science and Technology Project from Ministry of Housing and Urban-Rural Development of the People’s Republic of China(No.2014-K7-007)。
文摘Fe_(3)O_(4)and Cu_(2)O were successively immobilized on alkali-treated straw,and the magnetically separable straw@Fe_(3)O_(4)/Cu_(2)O composite was obtained.The straw@Fe_(3)O_(4)/Cu_(2)O was characterized by Fourier transform infrared spectroscopy,X-ray diffraction,scanning electron microscopy,X-ray photoelectron spectroscopy and vibrating sample magnetometry,respectively.Photocatalytic performance of the straw@Fe_(3)O_(4)/Cu_(2)O was evaluated by measuring the degradation of methyl orange(MO)under irradiation of visible light.The introduction of Fe3O4 not only endowed the straw@Fe_(3)O_(4)/Cu_(2)O with magnetic separation feature but also significantly enhanced photocatalytic activity because Fe3O4 could prevent recombination of hole-electron pairs.The active species capture experiment showed that holes(h+),hydroxyl(∙OH)and superoxide(∙O2ˉ)radicals all took part in the MO degradation.In addition,the photocatalytic mechanism of straw@Fe_(3)O_(4)/Cu_(2)O was proposed based on the experimental results.After five cycles for the photodegradation of MO,the straw@Fe_(3)O_(4)/Cu_(2)O still displayed good photocatalytic activity,suggesting that the as-prepared composite had great potential for practical use in wastewater treatment.
基金This work is funded by National Natural Science Foundation of China(Nos.61904023,11974063)Fundamental Research Funds for the Cen-tral Universities(2021CDJQY-022)Natural Science Foundation of Chongqing(No.cstc2019jcyj-bshX0078,cstc2020jcyj-jqX0028).
文摘Yellow light-emitting diodes(LEDs) as soft light have attracted abundant attention in lithography room, museum and art gallery. However, the development of efficient yellow LEDs lags behind green and blue LEDs, and the available perovskites yellow LEDs suffer from the instability. Herein, a pressure-assisted cooling method is proposed to grow lead-free CsCu2I3single crystals, which possess uniform surface morphology and enhanced photoluminescence quantum yield(PLQY) stability, with only 10% PLQY losses after being stored in air after 5000 h.Then, the single crystals used for yellow LEDs without encapsulation exhibit a decent Correlated Color Temperature(CCT) of 4290 K, a Commission Internationale de l’Eclairage(CIE) coordinate of(0.38, 0.41), and an excellent 570-h operating stability under heating temperature of 100°C. Finally, the yellow LEDs facilitate the application in wireless visible light communication(VLC), which show a-3 dB bandwidth of 21.5 MHz and a high achievable data rate of 219.2 Mbps by using orthogonal frequency division multiplexing(OFDM) modulation with adaptive bit loading. The present work not only promotes the development of lead-free single crystals, but also inspires the potential of CsCu2I3in the field of yellow illumination and wireless VLC.
文摘Radio waves and strong magneticfields are used by Magnetic Reso-nance Imaging(MRI)scanners to detect tumours,wounds and visualize detailed images of the human body.Wi-Fi and other medical devices placed in the MRI procedure room produces RF noise in MRI Images.The RF noise is the result of electromagnetic emissions produced by Wi-Fi and other medical devices that interfere with the operation of the MRI scanner.Existing techniques for RF noise mitigation involve RF shielding techniques which induce eddy currents that affect the MRI image quality.RF shielding techniques are complex and lead to RF leak-age.VLC(Visible light Communication)is an emerging and efficient technology to avoid RF interference near MRI scanners.Range augmentation with power conservation of the LED is a big challenge in existing VLC systems.The major objective of the proposed work is to develop an intelligent-MRI room design without RF interference using visible light communication and enhance the distance between VLC transmitter and VLC receiver.In this paper,it is proposed to implement VLC using On-Off keying modulation and enhance distance using large active area photodiodes with Automatic Gain Control Circuit(AGC)using software and hardware.The performance of the proposed intelligent MRI-VLC system is analyzed by calculating Bit Error Rate at an inclined distance of 50 cm away from line of sight of the LED.The Experimental results showed that the maximum distance achieved was 400 cm at Bit Error Rate(BER)of 1.5×10^(-5).