[Objective] This study was conducted to evaluate three training systems for Korla fragrant pear trees by comparing the characteristic parameters of light response curve and CO2 response curve, and to provide some theo...[Objective] This study was conducted to evaluate three training systems for Korla fragrant pear trees by comparing the characteristic parameters of light response curve and CO2 response curve, and to provide some theoretical basis for improving the pruning techniques of Korla fragrant pear trees. [Method] The light response curve and CO2 response curve of the trees trained to three systems were measured by LI-6400 portable photosynthesis system. The SPAD value was measured using SPAD-502 chlorophyll meter, and specific leaf weight was calculated, to evaluate the effects of the three training systems. [Result] The CO2 response curves of the three training systems were basically in agreement with their light response curves, but there were some differences in their characteristic parameters. Among the three training systems, the maximum net photosynthetic rate, apparent quantum yield and light compensation point of espalier trained trees were the highest, while their light saturation point was the lowest. The CO2 saturation point of delayed-open central leader trained trees and open center trained trees were 1 752 and 1 665 μmol/mol, both of which were much higher than that of espalier trained trees. In addition, the carboxylation efficiency and photorespiration rate of espalier trained trees were both higher than those of delayed-open central leader trained trees and open center trained trees, while the CO2 compensation point of espalier trained trees was the lowest. The leaf SPAD value of espalier trained trees was the largest, followed by that of open center trained trees, and the leaf SPAD value of delayed-open central leader trained trees was the smallest. In addition, the leaf area and specific leaf weight of espalier trained trees were both the highest, followed by those of open center trained trees. [Conclusion] Among the training systems for Korla fragrant pear trees, the espalier training system had better ability to capture light, higher photosynthetic productivity and strongest adaptability to light environment, and open center training system takes the second place. On the contrary, delayed-open central leader training system has the weakest adaptability to light environment, but it can adapt to a higher CO2 concentration. In summary, for the training of Korla fragrant pear trees, espalier training system, which has the highest theoretical yield, is the best among the three training systems, and delayed-open central leader training system is the worst.展开更多
[Objectives]This study was conducted to investigate the differences of photosynthetic physiological characteristics of different varieties(strains),which will provide a theoretical basis for high photosynthesis effici...[Objectives]This study was conducted to investigate the differences of photosynthetic physiological characteristics of different varieties(strains),which will provide a theoretical basis for high photosynthesis efficiency breeding and application in Chinese chestnut.[Methods]Six Chinese chestnut varieties of Castanea mollissima‘Yanbao’,C.mollissima‘Yanqiu’,C.mollissima‘Yanchang’,C.mollissima‘Yanjia’,C.mollissima‘Qianxi 37’,and C.mollissima‘Hybrid 22’were used as the materials.Using the portable photosynthesis system Li-6400,we measured the photosynthetic characteristics and diurnal variation of leaf samples of six different chestnut varieties or strains.We fitted the light response curves and photosynthetic parameters using the leaf floating model.Additionally,we determined the chlorophyll content in the leaves using a UV-visible spectrophotometer.[Results]Among the six chestnut varieties or strains,‘Yanqiu’exhibited a significantly higher photosynthetic light saturation point(P LSP)compared to other five varieties,and‘Hybrid 22’ranked second,indicating that these two varieties had the strongest adaptation to high light intensity.The photosynthetic light compensation point(P LCP)of‘Yanchang’was significantly higher than other five varieties,and"Qianxi 37"ranked second,indicating that these two varieties had the strongest adaptation to low light intensity.Additionally,they exhibited higher chlorophyll content and maintained good photosynthetic characteristics even in shaded environments with weak light stress.Varieties‘Yanbao’and‘Yanjia’showed higher P LSP and lower P LCP,indicating that these two varieties have a wider range of adaptation to light intensity.They were capable of efficiently utilizing light across a broader spectrum of intensities.‘Yanqiu’had the highest maximum net photosynthetic rate(P n,max)and the lowest dark respiration rate(R d),along with the highest chlorophyll content.It indicated that‘Yanqiu’has strong photosynthetic capacity and organic matter accumulation ability.It also had the highest P LSP,enabling it to fully utilize the high light environment of the Yanshan Mountains and possessed high light efficiency characteristics.The P n,max of‘Yanqiu’was significantly higher than other varieties.‘Hybrid 22’and‘Yanbao’also exhibited significantly higher P n,max compared with‘Yanjia’and‘Qianxi 37’.‘Yanchang’had the lowest P n,max.The order of P n,max among the six chestnut varieties or strains was as follows:‘Yanqiu’>‘Hybrid 22’>‘Yanbao’>‘Yanjia’>‘Qianxi 37’>‘Yanchang’.[Conclusions]展开更多
With andromonoecious<i><span> Momordica charantia </span></i><span>L.</span><span> </span><span>(bitter gourd) as material, three light qualities</span><s...With andromonoecious<i><span> Momordica charantia </span></i><span>L.</span><span> </span><span>(bitter gourd) as material, three light qualities</span><span> </span><span>(50 μmol·m</span><sup><span style="vertical-align:super;">-2</span></sup><span>·s</span><sup><span style="vertical-align:super;">-1</span></sup><span>) including white LED light</span><span> </span><span>(WL), blue monochromatic light (B,</span><span> </span><span>465 nm), and red monochromatic light (R, 650 nm) were carried out to investigate their effects on seed germination, physiological and biochemical parameters, sex differentiation and photosynthetic characteristics of bitter gourd. The results showed that compared to the WL treatment, the R treatment significantly promoted seed germination, seedling height elongation and soluble sugar content, the B treatment significantly increased seedling stem diameter, reducing sugar content and soluble protein content, the R and B treatments both significantly reduced sucrose content, but their POD activity showed no significant difference. Compared with the R treatment, the B treatment significantly increased the total female flower number and female flower nod ratio in 30 nods of main stems. The study of photosynthetic characteristics found that the R and B treatments could effectively increase the </span><span>stomata</span><span>l conductance (GS) of leaves, significantly improved the net photosynthetic rate</span><span> </span><span>(Pn) compared to the WL treatment, and the effect of the B treatment was better. Compared to the R and WL treatments, the B treatment increased the maximum photosynthetic rate (P</span><sub><span style="vertical-align:sub;">max</span></sub><span>),</span><span> </span><span>apparent quantum efficiency</span><span> </span><span>(AQE) and light saturation point</span><span> </span><span>(LSP), and reduced the dark respiration rate (Rd) and light compensation point</span><span> </span><span>(LCP) of the leaves. Fit light response curves showed that the adaptability and utilization of weak light in bitter gourd were middle or below, but it showed higher adaptability and utilization of strong light. Thus, it suggests that </span><i><span>Momordica charantia</span></i><span> is a typical sun plan with lower Rd. In summary, it is concluded that blue light has a positive effect on the seed germination, seedling growth, sex differentiation and improving the photosynthetic performance, and this will lay the foundation for artificially regulating optimum photosynthesis using specific LEDs wavelength, and help to elucidate the relationship how light quality influences the sex differentiation of plant.</span>展开更多
A good quality, high yield, slow mature and middle season Japonica rice variety, Nanjing 9108 and its parents Guandong 194 and Wuxiangjing 14,were taken as the materials for the study. The growth and photosynthetic ch...A good quality, high yield, slow mature and middle season Japonica rice variety, Nanjing 9108 and its parents Guandong 194 and Wuxiangjing 14,were taken as the materials for the study. The growth and photosynthetic characteristics of the rice plants at the post-flowering stage were compared and the rice yield components were examined at harvest. The results showed that as compared with Wuxiangjing 14, the per plant yield of Nanjing 9108 was 7.70% higher, and much higher than that of Guandong194. The large total grain per plant and heavy grain weigh of Nanjing 9108 were the important structure basis for its yield. Further analysis o the growth indicators showed that Nanjing 9108 had a large leaf area of upper three green leaves area and a smaller leaf base angle in the third leaf from the bottom blades, which helped get a higher photosynthetic capacity in groups. On the14 thday after flowering, Nanjing 9108 had similar value of net photosynthetic rate(Pn) to that of Wuxianjing 14, but lower than that of Guandong 194. Viewing from the parameters obtained from light response of photosynthesis on the modified model of rectangular hyperbola, Pn of Nanjing 9108 was more aptated to be saturated by light intensity and sensitive to photoinhibition. On the whole, Nanjing 9108 with high yield mainly resulted from its good plant type, grain structure and higher photosynthetic capacity in groups. Further improving its photosynthetic capacity o single leaf in Nanjing 9108 would be an important way for its super high yield po tential in the future.展开更多
The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia by comparing seedling characteristics, transpiration and photosynthetic perform...The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia by comparing seedling characteristics, transpiration and photosynthetic performance of Podocarpus falcatus seedlings in Eucalyptus plantation, Pinus plantation, adjacent natural forest and clear-felled plantation site. P. falcatus seedlings exhibited differences in architecture between Eucalyptus and Pinus plantations. They had higher leaf area, shorter internode length and greater number of lateral branches in Eucalyptus plantation. At similar vapor pressure deficit (VPD), P. falcatus transpired much less than E. saligna, especially at higher VPDs. Analysis of fluorescence parameters in the leaves showed no significant differences in the level of dark-adapted and light-adapted fluorescence yield (Fv/Fm and ΔF/Fm′, respectively), electron transport rate (ETR) and nonphotochemical quenching (NPQ) among seedlings grown inside plantations and adjacent natural forest, indicating similar photosynthetic performance. Nevertheless, there was evidence of photoinhibition in P. falcatus in the clear-felled site which had low fluorescence yield but high values of NPQ as protection from photoamage. The light response curves of ETR, NPQ and ΔF/Fm′ showed similar light saturation behavior among the seedlings grown inside plantations and natural forest and suggested a sequence of light-adapted to shade-adapted behavior in Natural forest 〉 Eucalyptus plantation 〉 Pinus plantation. The results show the structural flexibility, better water-use and adaptability of P. falcatus in its use of the understory environment of plantation species.展开更多
Light-emitting diodes (LEDs) can be used as an energy efficient alternative to high-pressure sodium (HPS), which have historically been the standard for supplemental lighting in cannabis cultivation. However, there is...Light-emitting diodes (LEDs) can be used as an energy efficient alternative to high-pressure sodium (HPS), which have historically been the standard for supplemental lighting in cannabis cultivation. However, there is a lack of scientific understanding in the cannabis industry regarding plant physiology, which has resulted in the adoption of cannabis cultivation methods based on hearsay rather than scientific research. The goals of this study were to 1) compare LED lighting options that are commonly used in the cannabis industry and 2) compare the top performing LED light with an industry standard HPS light. Specifically, three LED lights were compared (California Light Works ((SolarSystem 1100), BIOS Lighting (Icarus Gi2), and Fluence Bioengineering (now Fluence by Osram) (SPYDR xPLUS)), based on light distribution, leaf temperature, and photosynthetic performance indices. The LED versus HPS comparison was based on light response curves measured at photosynthetic photon flux densities (PPFD) of (0, 100, 200, 300, 400, 500, 750, 1000, 1250, 1500, 1750 and 2000 μmol<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>m<sup><span style="white-space:nowrap;">−</span>2</sup><span style="white-space:nowrap;">∙</span>s<sup><span style="white-space:nowrap;">−</span>1</sup>), carbon assimilation rates (<em>A</em>) μmol CO<sub>2</sub> m<sup><span style="white-space:nowrap;">−</span>2</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>s<sup><span style="white-space:nowrap;">−</span>1</sup> using a LiCor-6800 and resulting cannabinoid potency (THCA). The SPYDR xPLUS-Fluence by Osram had the highest performing LED light used in the LED comparison. At the suggested distance from bulb to canopy in the HPS versus LED comparison (6 inches for LEDs and 4 ft for HPS), carbon assimilation rates displayed a 142% percent increase in plants grown under LED vs. HPS with average photon flux densities of 795 and 298 μmol<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>m<sup><span style="white-space:nowrap;">−</span>2</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>s<sup><span style="white-space:nowrap;">−</span>1</sup> for LED and HPS, respectively. All cultivars of<em> Cannabis sativa </em>L. showed increased cannabinoid potency when grown under LED illumination. The results of this study provide further insight regarding the selection of supplemental light to achieve maximum productivity of <em>Cannabis sativa</em> L.展开更多
Aims The effects of clouds are now recognized as critically important to the understanding of climate change impacts on ecosystems.Regardless,few studies have focused specifically on the ecophysiological responses of ...Aims The effects of clouds are now recognized as critically important to the understanding of climate change impacts on ecosystems.Regardless,few studies have focused specifically on the ecophysiological responses of plants to clouds.Most continental mountain ranges are characterized by common convective cloud formation in the afternoons,yet little is known regarding this influence on plant water and carbon relations.Here we compare the ecophysiology of two contrasting,yet ubiquitous growth forms,needle-leaf and broadleaf,under representative cloud regimes of the Snowy Range,Medicine Bow Mountains,southeastern Wyoming,USA.Methods Photosynthetic gas exchange,water use efficiency,xylem water potentials and micrometeorological data were measured on representative clear,overcast and partly cloudy days during the summers of 2012 and 2013 for two indigenous broadleaf(Caltha leptosepala and Arnica parryi)and two needle-leaf species(Picea engelmannii and Abies lasiocarpa)that co-occur contiguously.Important Findings Reductions in sunlight with cloud cover resulted in more dramatic declines in photosynthesis for the two broadleaf species(ca.50-70%reduction)versus the two conifers(no significant difference).In addition,the presence of clouds corresponded with lower leaf conductance,transpiration and plant water status in all species.However,the more constant photosynthesis in conifers under all cloud conditions,coupled with reduced transpiration,resulted in greater water use efficiency(ca.25%higher)than the broadleaf species.These differences appear to implicate the potential importance of natural cloud patterns in the adaptive ecophysiology of these two contrasting,but common,plant growth forms.展开更多
文摘[Objective] This study was conducted to evaluate three training systems for Korla fragrant pear trees by comparing the characteristic parameters of light response curve and CO2 response curve, and to provide some theoretical basis for improving the pruning techniques of Korla fragrant pear trees. [Method] The light response curve and CO2 response curve of the trees trained to three systems were measured by LI-6400 portable photosynthesis system. The SPAD value was measured using SPAD-502 chlorophyll meter, and specific leaf weight was calculated, to evaluate the effects of the three training systems. [Result] The CO2 response curves of the three training systems were basically in agreement with their light response curves, but there were some differences in their characteristic parameters. Among the three training systems, the maximum net photosynthetic rate, apparent quantum yield and light compensation point of espalier trained trees were the highest, while their light saturation point was the lowest. The CO2 saturation point of delayed-open central leader trained trees and open center trained trees were 1 752 and 1 665 μmol/mol, both of which were much higher than that of espalier trained trees. In addition, the carboxylation efficiency and photorespiration rate of espalier trained trees were both higher than those of delayed-open central leader trained trees and open center trained trees, while the CO2 compensation point of espalier trained trees was the lowest. The leaf SPAD value of espalier trained trees was the largest, followed by that of open center trained trees, and the leaf SPAD value of delayed-open central leader trained trees was the smallest. In addition, the leaf area and specific leaf weight of espalier trained trees were both the highest, followed by those of open center trained trees. [Conclusion] Among the training systems for Korla fragrant pear trees, the espalier training system had better ability to capture light, higher photosynthetic productivity and strongest adaptability to light environment, and open center training system takes the second place. On the contrary, delayed-open central leader training system has the weakest adaptability to light environment, but it can adapt to a higher CO2 concentration. In summary, for the training of Korla fragrant pear trees, espalier training system, which has the highest theoretical yield, is the best among the three training systems, and delayed-open central leader training system is the worst.
基金Supported by National Key R&D Program of China (2022YFD2200400)Doctoral Started Fund of Hebei Normal University of Science and Technology (2023YB026)Hebei Qinglong Chinese Chestnut Technological Yard.
文摘[Objectives]This study was conducted to investigate the differences of photosynthetic physiological characteristics of different varieties(strains),which will provide a theoretical basis for high photosynthesis efficiency breeding and application in Chinese chestnut.[Methods]Six Chinese chestnut varieties of Castanea mollissima‘Yanbao’,C.mollissima‘Yanqiu’,C.mollissima‘Yanchang’,C.mollissima‘Yanjia’,C.mollissima‘Qianxi 37’,and C.mollissima‘Hybrid 22’were used as the materials.Using the portable photosynthesis system Li-6400,we measured the photosynthetic characteristics and diurnal variation of leaf samples of six different chestnut varieties or strains.We fitted the light response curves and photosynthetic parameters using the leaf floating model.Additionally,we determined the chlorophyll content in the leaves using a UV-visible spectrophotometer.[Results]Among the six chestnut varieties or strains,‘Yanqiu’exhibited a significantly higher photosynthetic light saturation point(P LSP)compared to other five varieties,and‘Hybrid 22’ranked second,indicating that these two varieties had the strongest adaptation to high light intensity.The photosynthetic light compensation point(P LCP)of‘Yanchang’was significantly higher than other five varieties,and"Qianxi 37"ranked second,indicating that these two varieties had the strongest adaptation to low light intensity.Additionally,they exhibited higher chlorophyll content and maintained good photosynthetic characteristics even in shaded environments with weak light stress.Varieties‘Yanbao’and‘Yanjia’showed higher P LSP and lower P LCP,indicating that these two varieties have a wider range of adaptation to light intensity.They were capable of efficiently utilizing light across a broader spectrum of intensities.‘Yanqiu’had the highest maximum net photosynthetic rate(P n,max)and the lowest dark respiration rate(R d),along with the highest chlorophyll content.It indicated that‘Yanqiu’has strong photosynthetic capacity and organic matter accumulation ability.It also had the highest P LSP,enabling it to fully utilize the high light environment of the Yanshan Mountains and possessed high light efficiency characteristics.The P n,max of‘Yanqiu’was significantly higher than other varieties.‘Hybrid 22’and‘Yanbao’also exhibited significantly higher P n,max compared with‘Yanjia’and‘Qianxi 37’.‘Yanchang’had the lowest P n,max.The order of P n,max among the six chestnut varieties or strains was as follows:‘Yanqiu’>‘Hybrid 22’>‘Yanbao’>‘Yanjia’>‘Qianxi 37’>‘Yanchang’.[Conclusions]
文摘With andromonoecious<i><span> Momordica charantia </span></i><span>L.</span><span> </span><span>(bitter gourd) as material, three light qualities</span><span> </span><span>(50 μmol·m</span><sup><span style="vertical-align:super;">-2</span></sup><span>·s</span><sup><span style="vertical-align:super;">-1</span></sup><span>) including white LED light</span><span> </span><span>(WL), blue monochromatic light (B,</span><span> </span><span>465 nm), and red monochromatic light (R, 650 nm) were carried out to investigate their effects on seed germination, physiological and biochemical parameters, sex differentiation and photosynthetic characteristics of bitter gourd. The results showed that compared to the WL treatment, the R treatment significantly promoted seed germination, seedling height elongation and soluble sugar content, the B treatment significantly increased seedling stem diameter, reducing sugar content and soluble protein content, the R and B treatments both significantly reduced sucrose content, but their POD activity showed no significant difference. Compared with the R treatment, the B treatment significantly increased the total female flower number and female flower nod ratio in 30 nods of main stems. The study of photosynthetic characteristics found that the R and B treatments could effectively increase the </span><span>stomata</span><span>l conductance (GS) of leaves, significantly improved the net photosynthetic rate</span><span> </span><span>(Pn) compared to the WL treatment, and the effect of the B treatment was better. Compared to the R and WL treatments, the B treatment increased the maximum photosynthetic rate (P</span><sub><span style="vertical-align:sub;">max</span></sub><span>),</span><span> </span><span>apparent quantum efficiency</span><span> </span><span>(AQE) and light saturation point</span><span> </span><span>(LSP), and reduced the dark respiration rate (Rd) and light compensation point</span><span> </span><span>(LCP) of the leaves. Fit light response curves showed that the adaptability and utilization of weak light in bitter gourd were middle or below, but it showed higher adaptability and utilization of strong light. Thus, it suggests that </span><i><span>Momordica charantia</span></i><span> is a typical sun plan with lower Rd. In summary, it is concluded that blue light has a positive effect on the seed germination, seedling growth, sex differentiation and improving the photosynthetic performance, and this will lay the foundation for artificially regulating optimum photosynthesis using specific LEDs wavelength, and help to elucidate the relationship how light quality influences the sex differentiation of plant.</span>
基金Supported by National Natural Scientific Fund Program(31371554)Jiangsu Innovation Fund(CX[(12)1003])+1 种基金Major National Program of Genetic Modified Food(2014ZX-08001-004-001-009)Jiangsu Natural Scientific Fund(BK20130708)~~
文摘A good quality, high yield, slow mature and middle season Japonica rice variety, Nanjing 9108 and its parents Guandong 194 and Wuxiangjing 14,were taken as the materials for the study. The growth and photosynthetic characteristics of the rice plants at the post-flowering stage were compared and the rice yield components were examined at harvest. The results showed that as compared with Wuxiangjing 14, the per plant yield of Nanjing 9108 was 7.70% higher, and much higher than that of Guandong194. The large total grain per plant and heavy grain weigh of Nanjing 9108 were the important structure basis for its yield. Further analysis o the growth indicators showed that Nanjing 9108 had a large leaf area of upper three green leaves area and a smaller leaf base angle in the third leaf from the bottom blades, which helped get a higher photosynthetic capacity in groups. On the14 thday after flowering, Nanjing 9108 had similar value of net photosynthetic rate(Pn) to that of Wuxianjing 14, but lower than that of Guandong 194. Viewing from the parameters obtained from light response of photosynthesis on the modified model of rectangular hyperbola, Pn of Nanjing 9108 was more aptated to be saturated by light intensity and sensitive to photoinhibition. On the whole, Nanjing 9108 with high yield mainly resulted from its good plant type, grain structure and higher photosynthetic capacity in groups. Further improving its photosynthetic capacity o single leaf in Nanjing 9108 would be an important way for its super high yield po tential in the future.
文摘The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia by comparing seedling characteristics, transpiration and photosynthetic performance of Podocarpus falcatus seedlings in Eucalyptus plantation, Pinus plantation, adjacent natural forest and clear-felled plantation site. P. falcatus seedlings exhibited differences in architecture between Eucalyptus and Pinus plantations. They had higher leaf area, shorter internode length and greater number of lateral branches in Eucalyptus plantation. At similar vapor pressure deficit (VPD), P. falcatus transpired much less than E. saligna, especially at higher VPDs. Analysis of fluorescence parameters in the leaves showed no significant differences in the level of dark-adapted and light-adapted fluorescence yield (Fv/Fm and ΔF/Fm′, respectively), electron transport rate (ETR) and nonphotochemical quenching (NPQ) among seedlings grown inside plantations and adjacent natural forest, indicating similar photosynthetic performance. Nevertheless, there was evidence of photoinhibition in P. falcatus in the clear-felled site which had low fluorescence yield but high values of NPQ as protection from photoamage. The light response curves of ETR, NPQ and ΔF/Fm′ showed similar light saturation behavior among the seedlings grown inside plantations and natural forest and suggested a sequence of light-adapted to shade-adapted behavior in Natural forest 〉 Eucalyptus plantation 〉 Pinus plantation. The results show the structural flexibility, better water-use and adaptability of P. falcatus in its use of the understory environment of plantation species.
文摘Light-emitting diodes (LEDs) can be used as an energy efficient alternative to high-pressure sodium (HPS), which have historically been the standard for supplemental lighting in cannabis cultivation. However, there is a lack of scientific understanding in the cannabis industry regarding plant physiology, which has resulted in the adoption of cannabis cultivation methods based on hearsay rather than scientific research. The goals of this study were to 1) compare LED lighting options that are commonly used in the cannabis industry and 2) compare the top performing LED light with an industry standard HPS light. Specifically, three LED lights were compared (California Light Works ((SolarSystem 1100), BIOS Lighting (Icarus Gi2), and Fluence Bioengineering (now Fluence by Osram) (SPYDR xPLUS)), based on light distribution, leaf temperature, and photosynthetic performance indices. The LED versus HPS comparison was based on light response curves measured at photosynthetic photon flux densities (PPFD) of (0, 100, 200, 300, 400, 500, 750, 1000, 1250, 1500, 1750 and 2000 μmol<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>m<sup><span style="white-space:nowrap;">−</span>2</sup><span style="white-space:nowrap;">∙</span>s<sup><span style="white-space:nowrap;">−</span>1</sup>), carbon assimilation rates (<em>A</em>) μmol CO<sub>2</sub> m<sup><span style="white-space:nowrap;">−</span>2</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>s<sup><span style="white-space:nowrap;">−</span>1</sup> using a LiCor-6800 and resulting cannabinoid potency (THCA). The SPYDR xPLUS-Fluence by Osram had the highest performing LED light used in the LED comparison. At the suggested distance from bulb to canopy in the HPS versus LED comparison (6 inches for LEDs and 4 ft for HPS), carbon assimilation rates displayed a 142% percent increase in plants grown under LED vs. HPS with average photon flux densities of 795 and 298 μmol<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>m<sup><span style="white-space:nowrap;">−</span>2</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>s<sup><span style="white-space:nowrap;">−</span>1</sup> for LED and HPS, respectively. All cultivars of<em> Cannabis sativa </em>L. showed increased cannabinoid potency when grown under LED illumination. The results of this study provide further insight regarding the selection of supplemental light to achieve maximum productivity of <em>Cannabis sativa</em> L.
基金National Science Foundation,Physiological and Structural Systems(1122092).
文摘Aims The effects of clouds are now recognized as critically important to the understanding of climate change impacts on ecosystems.Regardless,few studies have focused specifically on the ecophysiological responses of plants to clouds.Most continental mountain ranges are characterized by common convective cloud formation in the afternoons,yet little is known regarding this influence on plant water and carbon relations.Here we compare the ecophysiology of two contrasting,yet ubiquitous growth forms,needle-leaf and broadleaf,under representative cloud regimes of the Snowy Range,Medicine Bow Mountains,southeastern Wyoming,USA.Methods Photosynthetic gas exchange,water use efficiency,xylem water potentials and micrometeorological data were measured on representative clear,overcast and partly cloudy days during the summers of 2012 and 2013 for two indigenous broadleaf(Caltha leptosepala and Arnica parryi)and two needle-leaf species(Picea engelmannii and Abies lasiocarpa)that co-occur contiguously.Important Findings Reductions in sunlight with cloud cover resulted in more dramatic declines in photosynthesis for the two broadleaf species(ca.50-70%reduction)versus the two conifers(no significant difference).In addition,the presence of clouds corresponded with lower leaf conductance,transpiration and plant water status in all species.However,the more constant photosynthesis in conifers under all cloud conditions,coupled with reduced transpiration,resulted in greater water use efficiency(ca.25%higher)than the broadleaf species.These differences appear to implicate the potential importance of natural cloud patterns in the adaptive ecophysiology of these two contrasting,but common,plant growth forms.