A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distr...A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distributions of atmospheric trace gases. The telescope of the ToTaL-DOAS system points to targets which are located at known dis- tances from the measurement device and illuminated by sunlight. Average concentrations with high spatial resolution can be retrieved by receiving sunlight reflected from the targets, A filed measurement of NO2 concentration is performed with the ToTaL-DOAS system in Shijiazhuang in the autumn of 2011. The measurement data are compared with con- centrations measured by the point monitoring technique at the same site. The results show that the ToTaL-DOAS system is sensitive to the variation of NO2 concentrations along the optical path.展开更多
针对强日光环境下OCC(Optical Camera Communication)系统接收端解码困难的问题,提出了基于分段式线性灰度变换的Gradient-Harris解码算法。首先搭建一套OCC实验系统,接收端相机采集原始图像,利用标准相关系数匹配方法提取目标LED阵列...针对强日光环境下OCC(Optical Camera Communication)系统接收端解码困难的问题,提出了基于分段式线性灰度变换的Gradient-Harris解码算法。首先搭建一套OCC实验系统,接收端相机采集原始图像,利用标准相关系数匹配方法提取目标LED阵列区域。其次通过分段式线性灰度变换对目标LED阵列区域进行图像增强,利用Gradient-Harris解码算法进行目标LED阵列的形状提取和状态识别。实验结果表明,应用基于分段式线性灰度变换的Gradient-Harris解码算法,强日光环境下OCC实验系统的平均解码速率为128.08 bit/s,平均误码率为4.38×10^(-4),最大通信距离为55 m。展开更多
基金Project supported by the National High Technology Research and Development of China (Grant No.2009AA063006)the National Natural Science Foundation of China (Grant No. 40905010)the Special Project of Environmental Nonprofit Industry Research,China (Grant No. 201109007)
文摘A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distributions of atmospheric trace gases. The telescope of the ToTaL-DOAS system points to targets which are located at known dis- tances from the measurement device and illuminated by sunlight. Average concentrations with high spatial resolution can be retrieved by receiving sunlight reflected from the targets, A filed measurement of NO2 concentration is performed with the ToTaL-DOAS system in Shijiazhuang in the autumn of 2011. The measurement data are compared with con- centrations measured by the point monitoring technique at the same site. The results show that the ToTaL-DOAS system is sensitive to the variation of NO2 concentrations along the optical path.
文摘针对强日光环境下OCC(Optical Camera Communication)系统接收端解码困难的问题,提出了基于分段式线性灰度变换的Gradient-Harris解码算法。首先搭建一套OCC实验系统,接收端相机采集原始图像,利用标准相关系数匹配方法提取目标LED阵列区域。其次通过分段式线性灰度变换对目标LED阵列区域进行图像增强,利用Gradient-Harris解码算法进行目标LED阵列的形状提取和状态识别。实验结果表明,应用基于分段式线性灰度变换的Gradient-Harris解码算法,强日光环境下OCC实验系统的平均解码速率为128.08 bit/s,平均误码率为4.38×10^(-4),最大通信距离为55 m。