This paper calculates light scattering by a spherical water particle containing densely packed inclusions at a visible wavelength 0.55 μm by a combination of ray-tracing and Monte Carlo techniques. While the individu...This paper calculates light scattering by a spherical water particle containing densely packed inclusions at a visible wavelength 0.55 μm by a combination of ray-tracing and Monte Carlo techniques. While the individual reflection and refraction events at the outer boundary of a sphere particle are considered by a ray-tracing program, the Monte Carlo routine simulates internal scattering processes. The main advantage of this method is that the shape of the particle can be arbitrary, and multiple scattering can be considered in the internal scattering processes. A dense-medium light-scattering theory based on the introduction of the static structure factor is used to calculate the phase function and asymmetry parameters for densely packed inclusions. Numerical results of the single scattering characteristics for a sphere containing multiple densely packed inclusions are given.展开更多
A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distr...A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distributions of atmospheric trace gases. The telescope of the ToTaL-DOAS system points to targets which are located at known dis- tances from the measurement device and illuminated by sunlight. Average concentrations with high spatial resolution can be retrieved by receiving sunlight reflected from the targets, A filed measurement of NO2 concentration is performed with the ToTaL-DOAS system in Shijiazhuang in the autumn of 2011. The measurement data are compared with con- centrations measured by the point monitoring technique at the same site. The results show that the ToTaL-DOAS system is sensitive to the variation of NO2 concentrations along the optical path.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 60877050)
文摘This paper calculates light scattering by a spherical water particle containing densely packed inclusions at a visible wavelength 0.55 μm by a combination of ray-tracing and Monte Carlo techniques. While the individual reflection and refraction events at the outer boundary of a sphere particle are considered by a ray-tracing program, the Monte Carlo routine simulates internal scattering processes. The main advantage of this method is that the shape of the particle can be arbitrary, and multiple scattering can be considered in the internal scattering processes. A dense-medium light-scattering theory based on the introduction of the static structure factor is used to calculate the phase function and asymmetry parameters for densely packed inclusions. Numerical results of the single scattering characteristics for a sphere containing multiple densely packed inclusions are given.
基金Project supported by the National High Technology Research and Development of China (Grant No.2009AA063006)the National Natural Science Foundation of China (Grant No. 40905010)the Special Project of Environmental Nonprofit Industry Research,China (Grant No. 201109007)
文摘A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distributions of atmospheric trace gases. The telescope of the ToTaL-DOAS system points to targets which are located at known dis- tances from the measurement device and illuminated by sunlight. Average concentrations with high spatial resolution can be retrieved by receiving sunlight reflected from the targets, A filed measurement of NO2 concentration is performed with the ToTaL-DOAS system in Shijiazhuang in the autumn of 2011. The measurement data are compared with con- centrations measured by the point monitoring technique at the same site. The results show that the ToTaL-DOAS system is sensitive to the variation of NO2 concentrations along the optical path.