期刊文献+
共找到5,010篇文章
< 1 2 250 >
每页显示 20 50 100
Mass Transfer-Promoted Fe^(2+)/Fe^(3+)Circulation Steered by 3D Flow-Through Co-Catalyst System Toward Sustainable Advanced Oxidation Processes
1
作者 Weiyang Lv Hao Li +6 位作者 Jinhui Wang Lixin Wang Zenglong Wu Yuge Wang Wenkai Song Wenkai Cheng Yuyuan Yao 《Engineering》 SCIE EI CAS CSCD 2024年第5期264-275,共12页
Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-c... Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment. 展开更多
关键词 Advanced oxidation processes 3D co-catalyst Flow-through mode Enhanced mass transfer Complex wastewater treatment
下载PDF
UV-Based Advanced Oxidation Processes for Antibiotic Resistance Control: Efficiency, Influencing Factors, and Energy Consumption
2
作者 Jiarui Han Wanxin Li +5 位作者 Yun Yang Xuanwei Zhang Siyu Bao Xiangru Zhang Tong Zhang Kenneth Mei Yee Leung 《Engineering》 SCIE EI CAS CSCD 2024年第6期27-39,共13页
Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibi... Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs. 展开更多
关键词 Advanced oxidation processes Ultraviolet/chlorine Ultraviolet/hydrogen peroxide Ultraviolet/persulfate Antibiotic resistant bacteria Antibiotic resistance genes
下载PDF
Microstructure and high temperature oxidation resistance of Si-Y co-deposition coatings prepared on TiAl alloy by pack cementation process 被引量:6
3
作者 李涌泉 谢发勤 吴向清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期803-810,共8页
In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstruc... In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy. 展开更多
关键词 TiAl alloy Si-Y co-deposition coating MICROSTRUCTURE high temperature oxidation resistance pack cementation process
下载PDF
Oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process 被引量:1
4
作者 周宇通 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2781-2788,共8页
In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron ... In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation. 展开更多
关键词 aluminum foam gas injection foaming process oxide film oxidation kinetics
下载PDF
Effects of vacuum pre-oxidation process on thermally-grown oxides layer of CoCrAlY high temperature corrosion resistance coating
5
作者 韩玉君 朱志莹 +2 位作者 李晓泉 申赛刚 叶福兴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3305-3314,共10页
The influence of the certain specific vacuum pre-oxidation process on the phase transformation of thermally-grown oxides(TGO) was studied.The CoCrAlY high temperature corrosion resistance coatings were produced onto... The influence of the certain specific vacuum pre-oxidation process on the phase transformation of thermally-grown oxides(TGO) was studied.The CoCrAlY high temperature corrosion resistance coatings were produced onto the nickel-based superalloy substrate by high velocity oxygen fuel(HVOF).It suggests that the TGO usually consists of a great number of chromium oxides,cobalt oxides and spinel oxides besides alumina during the initial period of the high temperature oxidation if the specimens are not subjected to the appropriate vacuum pre-oxidation process.Furthermore,the amount of alumina is strongly dependent on the partial pressure of oxygen;while the CoCr2O4 spinel oxides are usually formed under the conditions of higher partial pressure of oxygen during the initial period and the lower partial pressure of oxygen during the subsequent period of the isothermal oxidation.After the appropriate vacuum pre-oxidation process,the TGO is mainly composed of alumina that contains lower Y element,while alumina that contains higher Y element sporadically distributes,and the spinel oxides cannot be found.After a longer period of the isothermal oxidation,a small amount of porous CoCr2O4 and the chrome oxide sporadically distribute near the continuous alumina.Additionally,after the appropriate vacuum pre-oxidation process,the TGO growth rate is relatively slow. 展开更多
关键词 vacuum pre-oxidation process thermally-grown oxides(TGO) high velocity oxygen fuel(HVOF) spinel oxides
下载PDF
Effects of Co_3O_4 nanocatalyst morphology on CO oxidation:Synthesis process map and catalytic activity 被引量:6
6
作者 曾良鹏 李孔斋 +2 位作者 黄樊 祝星 李宏程 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期908-922,共15页
This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hy... This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity. 展开更多
关键词 Cobalt oxide nanocatalyst Synthesis process map Morphology effect Catalytic activity Carbon monoxide oxidation
下载PDF
Mechanism of microarc oxidation on AZ91D Mg alloy induced byβ-Mg_(17)Al_(12) phase 被引量:1
7
作者 Dajun Zhai Xiaoping Li Jun Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期712-724,共13页
This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))wer... This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample. 展开更多
关键词 AZ91D Mg alloy microarc oxidation friction stir processing ZrO_(2) TiO_(2) β-Mg_(17)Al_(12)
下载PDF
Application of advanced oxidation processes for removing salicylic acid from synthetic wastewaters 被引量:7
8
作者 Djalma Ribeiro da Silva Carlos A.Martinez-Huítle 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第1期101-104,共4页
In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond... In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under aci... 展开更多
关键词 Advanced oxidation processes Salicylic acid(SA) Anodic oxidation Ta/BDD Electrocatalytic activity
下载PDF
Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes 被引量:7
9
作者 ZAYAS Pérez Teresa GEISSLER Gunther HERNANDEZ Fernando 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第3期300-305,共6页
The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal o... The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater. 展开更多
关键词 advanced oxidation processes coagulation-flocculation: coffee wastewater chemical oxygen demand (COD)
下载PDF
Advanced Oxidation Process for DNAN Using UV/H2O2 被引量:2
10
作者 Hailei Su Christos Christodoulatos +3 位作者 Benjamin Smolinski Per Arienti Greg O’Connor Xiaoguang Meng 《Engineering》 SCIE EI 2019年第5期849-854,共6页
2,4-Dinitroanisole(DNAN)is an important component of insensitive munitions that is anticipated to replace 2,4,6-trinitrotoluene(TNT)in munitions formulations.Photocatalyzed hydrogen peroxide(H2O2)oxidation experiments... 2,4-Dinitroanisole(DNAN)is an important component of insensitive munitions that is anticipated to replace 2,4,6-trinitrotoluene(TNT)in munitions formulations.Photocatalyzed hydrogen peroxide(H2O2)oxidation experiments and chemical analyses were conducted to study the effect of initial pH and H2O2 dosage on the kinetics of DNAN decomposition and the reaction pathways.The results show that DNAN degradation followed zero-order kinetics when a 250 ppm DNAN solution was treated with ultraviolet(UV)light and 1500–4500 ppm H2O2 in an initial pH range of 4–7.However,when the H2O2 concentration was 750 ppm,DNAN degradation followed pseudo-first-order kinetics.The results indicate that DNAN can easily be oxidized by UV/H2O2 treatment.When the H2O2 dosage was 1500 ppm and the initial pH was 7,DNAN was reduced from 250 ppm to less than 1 ppm in 3 h.However,the total organic carbon(TOC)and total carbon(TC)concentrations were reduced slowly from 100 to less than 70 ppm carbon(C)in 3 h,and decreased to about 5 ppm after 9 h of treatment,suggesting the formation of other organic compounds.Those reaction intermediates were oxidized to carbon dioxide(CO2)at a slower rate than the oxidation of DNAN.CO2 was emitted from the solution because the solution pH decreased rapidly to about 3 during the UV/H2O2 oxidation.Most of the nitrogen in DNAN was converted to nitrate by UV/H2O2 oxidation after 9 h of treatment.The research results indicate that UV/H2O2 oxidation is a promising technique for the treatment of DNAN in wastewater. 展开更多
关键词 2 4-Dinitroanisole Advanced oxidation processes WASTEWATER treatment PHOTOCATALYSIS
下载PDF
Multi-objective Optimization of Industrial Purified Terephthalic Acid Oxidation Process 被引量:11
11
作者 牟盛静 苏宏业 +1 位作者 古勇 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第5期536-541,共6页
Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a se... Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process. 展开更多
关键词 multi-objective optimization purified terephthalic acid oxidation process non-dominated sorting genetic algorithm
下载PDF
Degradation of Organic Pollutants by the Advanced Oxidation Processes 被引量:3
12
作者 钟理 郭江海 +2 位作者 吕扬效 李小莹 高桂田 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1999年第2期110-115,共6页
A kinetic model has been developed for the degradation of organic pollutants concerning with hydroperoxide ion as the initial step for generation of hydroxyl radical and its subsequent reaction mechanisms. Rate equati... A kinetic model has been developed for the degradation of organic pollutants concerning with hydroperoxide ion as the initial step for generation of hydroxyl radical and its subsequent reaction mechanisms. Rate equations were derived for depletion of ozone and pollutants in the peroxone oxidation process using ozone and hydrogen peroxide as combined oxidants. Kinetic data obtained experimentally from the hydrogen peroxide-ozone reaction and peroxone oxidation of nitrobenzene were analyzed by using the proposed rate equations. 展开更多
关键词 oxidation POLLUTANTS advanced oxidation processes
下载PDF
Processing-Microstructure Relationships in the Plasma Electrolytic Oxidation (PEO) Coating of a Magnesium Alloy 被引量:11
13
作者 R. O. Hussein D. O. Northwood X. Nie 《Materials Sciences and Applications》 2014年第3期124-139,共16页
In the plasma electrolytic oxidation (PEO) coating of light metal alloys, changing the electrical parameters and electrolytic composition can change the discharge behaviour and, ultimately, the thickness, surface morp... In the plasma electrolytic oxidation (PEO) coating of light metal alloys, changing the electrical parameters and electrolytic composition can change the discharge behaviour and, ultimately, the thickness, surface morphology and porosity of the coating. In the present study a combination of cathodic and anodic current pulses with suitable Ton and Toff periods were used to control the porosity and other structural defects of PEO coatings of an AM60B magnesium alloy. In order to investigate the effect of a current mode on the plasma discharge behaviour and coating microstructure during the PEO treatment of magnesium alloy, the emission intensities of six different spectral lines from the plasma species were recorded simultaneously as a function of both time and current mode using optical emission spectroscopy (OES) system. The fluctuations in signal intensities and temperature during the coating process reflect differences in location of both the discharge initiation, and discharge type. The coating surface morphology and microstructure that are obtained can be linked to the plasma discharge behavior. These results are discussed in relation to the discharge behaviour, and how such changes in discharge behaviour relate to the coating mechanisms. 展开更多
关键词 Plasma Electrolytic oxidation MICROSTRUCTURE Mg-Alloy process Parameters Current Mode
下载PDF
Growth process and corrosion resistance of micro-arc oxidation coating on Mg-Zn-Gd magnesium alloys 被引量:6
14
作者 王萍 刘道新 +2 位作者 李建平 郭永春 杨忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2198-2203,共6页
A Mg-6Zn-3Gd(mass fraction,%) alloy,noted as ZG63,was coated by different micro-arc oxidation(MAO) processes,and the coating structure and corrosion resistance of the alloy were studied using scanning electron microsc... A Mg-6Zn-3Gd(mass fraction,%) alloy,noted as ZG63,was coated by different micro-arc oxidation(MAO) processes,and the coating structure and corrosion resistance of the alloy were studied using scanning electron microscopy(SEM),glancing angle X-ray diffractometry(GAXRD) and various electrochemical methods.The micro-arc oxidation process consists of three stages and corresponds with different coating structures.In the initial stage,the coating thickness is linearly increased and is controlled by electrochemical polarization.In the second stage,the coating grows mainly inward and accords with parabolic regularity.In the third stage,the loose coating forms and is controlled by local arc light.The looser coating is mainly composed of MgSiO3 and the compact coating is mainly composed of MgO.From micro-arc oxidation stage to local arc light stage,the corrosion resistance of the coated alloy firstly increases and then decreases.The satisfied corrosion resistance corresponds to the coating time ranging from 6 to10 min. 展开更多
关键词 Mg-6Zn-3Gd magnesium alloys micro-arc oxidation growth process corrosion resistance
下载PDF
Laser processing induced nonvolatile memory in chaotic graphene oxide films for flexible reservoir computing applications
15
作者 Bo Chen Baojie Zhu +4 位作者 Yifan Wu Pengpeng Sang Jixuan Wu Xuepeng Zhan Jiezhi Chen 《Journal of Semiconductors》 EI CAS CSCD 2024年第12期130-134,共5页
Graphene oxide,as a 2D material with nanometer thickness,offers ultra-high mobility,chaotic properties,and low cost.These make graphene oxide memristors beneficial for reservoir computing(RC)networks.In this study,con... Graphene oxide,as a 2D material with nanometer thickness,offers ultra-high mobility,chaotic properties,and low cost.These make graphene oxide memristors beneficial for reservoir computing(RC)networks.In this study,continuous-wave(CW)laser processing is used to reduce chaotic graphene oxide(CGO)films,resulting in the non-volatile storage capability based on the reduced chaotic graphene oxide(rCGO)films.Laser power significantly impacts the characteristics of the rCGO memristor.Material characterization indicates that laser radiation can effectively reduce the oxygen content in CGO films.With optimized laser power,the rCGO memristor achieves a large ratio at 18 mW laser power.Benefiting from the short-term mem-ory characteristics,distinct conductive states are achieved,which are further utilized to construct RC networks.With a third con-trol probe,the rCGO memristor can express rich reservoir states,demonstrating accuracy in predicting the Hénon map with an NRMSE below 0.3.These findings provide the potential for developing flexible RC networks based on graphene oxide memris-tors via laser processing. 展开更多
关键词 chaotic graphene oxide laser processing reservoir computing
下载PDF
Methanol oxidation in acidic and alkaline electrolytes using PtRuIn/C electrocatalysts prepared by borohydride reduction process 被引量:1
16
作者 Santos M.C.L. Nandenha J. +2 位作者 Ayoub J.M.S. Assumpao M.H.M.T. Neto A.O. 《燃料化学学报》 EI CAS CSCD 北大核心 2018年第12期1462-1471,共10页
PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing ... PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing agent and Carbon Vulcan XC72 as support. The synthetized PtRuIn/C electrocatalysts were characterized by X-ray diffraction( XRD),energy dispersive analysis( EDX),transmission electron microscopy( TEM),cyclic voltammetry( CV),chronoamperommetry( CA) and polarization curves in alkaline and acidic electrolytes( single cell experiments). The XRD patterns showPtpeaks are attributed to the face-centered cubic( fcc) structure,and a shift of Pt( fcc) peaks indicates that Ru or In is incorporated into Ptlattice. TEMmicrographs showmetal nanoparticles with an average nanoparticle size between 2.7 and 3.5 nm. Methanol oxidation in acidic and alkaline electrolytes was investigated at room temperature,by CV and CA. PtRu/C( 50 ∶ 50) shows the highest activity among all electrocatalysts in study considering methanol oxidation for acidic and alkaline electrolyte. Polarization curves at 80 ℃ showPtRuIn/C( 50 ∶ 25 ∶ 25)with superior performance for methanol oxidation,when compared to Pt/C,PtIn/C and PtRu/C for both electrolytes. The best performance obtained by PtRuIn/C( 50 ∶ 25 ∶ 25) in real conditions could be associated with the increased kinetics reaction and/or with the occurrence simultaneously of the bifunctional mechanism and electronic effect resulting from the presence of Ptalloy. 展开更多
关键词 BOROHYDRIDE reduction process PtRuIn/C ELECTROCATALYSTS METHANOL oxidation ACIDIC and ALKALINE electrolytes polarization CURVES
下载PDF
Explosion limits estimation and process optimization of direct propylene epoxidation with H2 and O2 被引量:1
17
作者 Mengke Lu Yanqiang Tang +5 位作者 Wenyao Chen Guanghua Ye Gang Qian Xuezhi Duan Weikang Yuan Xinggui Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第12期2968-2978,共11页
Direct propylene epoxidation with H2 and O2,an attractive process to produce propylene oxide(PO),has a potential explosion danger due to the coexistence of flammable gases(i.e.,C3 H6 and H2)and oxidizer(i.e.,O2).The u... Direct propylene epoxidation with H2 and O2,an attractive process to produce propylene oxide(PO),has a potential explosion danger due to the coexistence of flammable gases(i.e.,C3 H6 and H2)and oxidizer(i.e.,O2).The unknown explosion limits of the multi-component feed gas mixture make it difficult to optimize the reaction process under safe operation conditions.In this work,a distribution method is proposed and verified to be effective by comparing estimated and experimental explosion limits of more than 200 kinds of flammable gas mixture.Then,it is employed to estimate the explosion limits of the feed gas mixture,some results of which are also validated by the classic Le Chatelier’s Rule and flammable resistance method.Based on the estimated explosion limits,process optimization is carried out using commercially high and inherently safe reactant concentrations to enhance reaction performance.The promising results are directly obtained through the interface called gOPT in gPROMS only by using a simple,easy-constructed and mature packed-bed reactor,such as the PO yield of 13.3%,PO selectivity of 85.1%and outlet PO fraction of 1.8%.These results can be rationalized by indepth analyses and discussion about the effects of the decision variables on the operation safety and reaction performance.The insights revealed here could shed new light on the process development of the PO production based on the estimation of the explosion limits of the multi-component feed gas mixture containing flammable gase s,inert gas and O2,followed by process optimization. 展开更多
关键词 DIRECT PROPYLENE EPoxidation with H2/O2 PROPYLENE oxide Safe operation Explosion limits ESTIMATION process optimization
下载PDF
Direct oxidation of methane at low temperature using Pt/C,Pd/C,Pt/C-ATO and Pd/C-ATO electrocatalysts prepared by sodium borohydride reduction process 被引量:1
18
作者 J.Nandenha E.H.Fontes +2 位作者 R.M.Piasentin F.C.Fonseca A.O.Neto 《燃料化学学报》 EI CAS CSCD 北大核心 2018年第9期1137-1145,共9页
The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte... The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte at 25 ℃ and in a direct methane proton exchange membrane fuel cell at 80 ℃. The electrocatalysts prepared also were characterized by X-ray diffraction( XRD) and transmission electron microscopy( TEM). The diffractograms of the Pt/C and Pt/C-ATO electrocatalysts show four peaks associated with Pt face-centered cubic( fcc) structure,and the diffractograms of Pd/C and Pd/C-ATO show four peaks associated with Pd face-centered cubic( fcc) structure. For Pt/C-ATO and Pd/C-ATO,characteristic peaks of cassiterite( SnO_2) phase are observed,which are associated with Sb-doped SnO_2( ATO) used as supports for electrocatalysts. Cyclic voltammograms( CV) of all electrocatalysts after adsorption of methane show that there is a current increase during the anodic scan. However,this effect is more pronounced for Pt/C-ATO and Pd/C-ATO. This process is related to the oxidation of the adsorbed species through the bifunctional mechanism,where ATO provides oxygenated species for the oxidation of CO or HCO intermediates adsorbed in Pt or Pd sites. From in situ ATR-FTIR( Attenuated Total Reflectance-Fourier Transform Infrared) experiments for all electrocatalysts prepared the formation of HCO or CO intermediates are observed,which indicates the production of carbon dioxide. Polarization curves at 80 ℃in a direct methane fuel cell( DMEFC) show that Pd/C and Pt/C electroacatalysts have superior performance to Pd/C-ATO and Pt/C-ATO in methane oxidation. 展开更多
关键词 sodium BOROHYDRIDE reduction process Pt/C-ATO and Pd/C-ATO ELECTROCATALYSTS METHANE oxidation acidic electrolytes polarization curves
下载PDF
Fast and Balanced Charge Transport Enabled by Solution-Processed Metal Oxide Layers for Efficient and Stable Inverted Perovskite Solar Cells
19
作者 Jing Zhang James Mcgettrick +11 位作者 Kangyu Ji Jinxin Bi Thomas Webb Xueping Liu Dongtao Liu Aobo Ren Yuren Xiang Bowei Li Vlad Stolojan Trystan Watson Samuel D.Stranks Wei Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期240-248,共9页
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol... Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability. 展开更多
关键词 fast and balanced charge transfer inverted perovskite solar cells long-term stability low-temperature processing metal oxides
下载PDF
Chemical structures,analytical approaches and toxicological effects of oxidative derivatives of triglycerides as potential hazards in lipid thermal processing:A review
20
作者 Miao Zhang Chenxu Wang +2 位作者 Zhuohong Xie Boyan Gao Liangli Yu 《Grain & Oil Science and Technology》 CAS 2024年第4期270-279,共10页
There is an increasing attention on oxidative derivatives of triglycerides,a group of potential thermal processing induced food toxicants,which are formed during the thermal processing of food lipids.This review aims ... There is an increasing attention on oxidative derivatives of triglycerides,a group of potential thermal processing induced food toxicants,which are formed during the thermal processing of food lipids.This review aims to summarize current knowledge about their formation mechanisms,detection approaches,and toxicology impacts.Oxidative derivatives of triglycerides are generated through the oxidation,cyclization,polymerization,and hydrolysis of triglycerides under high-temperature and abundant oxygen.The analytical techniques,including GC,HPSEC,MS,^(1)H-NMR were discussed in analyzing these components.In addition,their toxic effects on human health,including effects on the liver,intestines,cardiovascular system,immune system,and metabolism were elucidated.Information in this review could be used to improve the understanding of oxidative derivatives of triglycerides and ultimately improve academic and industrial strategies for eliminating these compounds in thermal processing food systems. 展开更多
关键词 oxidative derivatives of triglycerides Food thermal processing Formation mechanism Analytical approaches Toxicological effects
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部