<正>A novel neurochip based on light addressable potentiometric sensor (LAPS) is designed.Using its light addressable characteristic.The problems of the limitations of restricted discrete active sites of current...<正>A novel neurochip based on light addressable potentiometric sensor (LAPS) is designed.Using its light addressable characteristic.The problems of the limitations of restricted discrete active sites of current neurochips,such as microelectrode array and field effect transistor array can be settled easily.Based on the theoretical analysis of the interface between cells and LAPS,spontaneously discharges of hippocampal neurons induced by Mg~ 2+)-free media treatment were recorded by LAPS.The results demonstrate that this kind of neurochip has potential to monitor electrophysiology of cultured cells in a non-invasive way.展开更多
The light-addressable potentiometric sensor (LAPS) is a semiconductor-based cellular biosensor with an electrolyte-insulator-semiconductor (EIS) structure.By depositing biocompatible layers on the sensing surface fo...The light-addressable potentiometric sensor (LAPS) is a semiconductor-based cellular biosensor with an electrolyte-insulator-semiconductor (EIS) structure.By depositing biocompatible layers on the sensing surface for cell culture, it can be used to detect bioelectrical parameters of cells.The characteristic curve for photocurrent versus applied bias voltage to the system shows a current-voltage curve (Ⅰ-Ⅴcurve).This technique can be used to detect the action potential changes towards different drugs based on the bias voltage dependence of an optical current,and provides a dynamic system by scanning light beam at the very cell on the sensor device.The LAPS overcomes the limitation of recording sites,but high spatial resolution and sensitivity are also paramount.This paper discussed a novel structure of LAPS array for extracellular monitoring to decrease potential noise level.Both characteristics of active recording array areas and cell culture conditions are measured.展开更多
Neurochip based on light-addressable potentiometric sensor(LAPS),whose sensing elements are excitable cells,can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed.H...Neurochip based on light-addressable potentiometric sensor(LAPS),whose sensing elements are excitable cells,can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed.Here we report a kind of neurochip with rat pheochromocytoma(PC12) cells hybrid with LAPS and a method of de-noising signals based on wavelet transform.Cells were cultured on LAPS for several days to form networks,and we then used LAPS system to detect the extracellular potentials with signals de-noised according to decomposition in the time-frequency space.The signal was decomposed into various scales,and coefficients were processed based on the properties of each layer.At last,signal was reconstructed based on the new coefficients.The results show that after de-noising,baseline drift is removed and signal-to-noise ratio is increased.It suggests that the neurochip of PC12 cells coupled to LAPS is stable and suitable for long-term and non-invasive measurement of cell electrophysiological properties with wavelet transform,taking advantage of its time-frequency localization analysis to reduce noise.展开更多
Titanium dioxide (TiO2) thin film was deposited on the surface of the light addressable potentiometric sensor (LAPS) to modify the sensor surface for the non-labeled detection of DNA molecules. To evaluate the effect ...Titanium dioxide (TiO2) thin film was deposited on the surface of the light addressable potentiometric sensor (LAPS) to modify the sensor surface for the non-labeled detection of DNA molecules. To evaluate the effect of ultraviolet (UV) treatment on the silanization level of TiO2 thin film by 3-aminopropyltriethoxysilane (APTS),fluorescein isothiocyanate (FITC) was used to label the amine group on the end of APTS immobilized onto the TiO2 thin film. We found that,with UV irradiation,the silanization level of the irradiated area of the TiO2 film was improved compared with the non-irradiated area under well-controlled conditions. This result indicates that TiO2 can act as a coating material on the biosensor surface to improve the effect and efficiency of the covalent immobilization of biomolecules on the sensor surface. The artificially synthesized probe DNA molecules were covalently linked onto the surface of TiO2 film. The hybridization of probe DNA and target DNA was monitored by the recording of I-V curves that shift along the voltage axis during the process of reaction. A significant LAPS signal can be detected at 10 μmol/L of target DNA sample.展开更多
This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based biosensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed o...This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based biosensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed on the basis of the light addressable potentiometric sensor (LAPS), in which rat OSNs were cultured on the surface of LAPS chip and served as sensing elements. LY294002, the specific inhibitor of phosphatidylinositol 3-kinase (PI3K), was used to enhance the responses of OSNs to odorants. The responses of OSNs to odorants with and without the treatment of LY294002 were recorded by LAPS. The results show that the enhancive effect of LY294002 was recorded efficiently by LAPS and the responses of this OSNs-LAPS hybrid biosensor were enhanced by LY294002 by about 1.5-fold. We conclude that this method can enhance the responses of OSNs-LAPS hybrid biosensors, which may provide a novel strategy for the bioelectrical signal monitor of OSNs in biosensors. It is also suggested that this strategy may be applicable to other kinds of OSNs-based biosensors for cellular activity detection, such as microelectrode array (MEA) and field effect transistor (FET).展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.30270387,No.30570492)the Project of State Key Laboratory of Transducer Technology of China(Grant No.SKT0403)the Foundation for the Bureau of Zhejiang Province of China(Grant No.20040197).
文摘<正>A novel neurochip based on light addressable potentiometric sensor (LAPS) is designed.Using its light addressable characteristic.The problems of the limitations of restricted discrete active sites of current neurochips,such as microelectrode array and field effect transistor array can be settled easily.Based on the theoretical analysis of the interface between cells and LAPS,spontaneously discharges of hippocampal neurons induced by Mg~ 2+)-free media treatment were recorded by LAPS.The results demonstrate that this kind of neurochip has potential to monitor electrophysiology of cultured cells in a non-invasive way.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 30270387, No. 30570492);the Project of State Key Laboratory of Transducer Technology of China (Grant No. SKT0403);the Foundation for the Bureau of Zhejiang Province of China (Grant No. 20040197).
文摘The light-addressable potentiometric sensor (LAPS) is a semiconductor-based cellular biosensor with an electrolyte-insulator-semiconductor (EIS) structure.By depositing biocompatible layers on the sensing surface for cell culture, it can be used to detect bioelectrical parameters of cells.The characteristic curve for photocurrent versus applied bias voltage to the system shows a current-voltage curve (Ⅰ-Ⅴcurve).This technique can be used to detect the action potential changes towards different drugs based on the bias voltage dependence of an optical current,and provides a dynamic system by scanning light beam at the very cell on the sensor device.The LAPS overcomes the limitation of recording sites,but high spatial resolution and sensitivity are also paramount.This paper discussed a novel structure of LAPS array for extracellular monitoring to decrease potential noise level.Both characteristics of active recording array areas and cell culture conditions are measured.
基金Project supported by the National Natural Science Foundation of China (Nos 30700167 and 60725102)the Project of State Key Laboratory of Transducer Technology of China (No SKT0702)+1 种基金the Zhejiang Provincial Natural Science Foundation of China (No Y2080673)the Scientific Research Fund of the Education Department of Zhejiang Province, China (No Y200909323)
文摘Neurochip based on light-addressable potentiometric sensor(LAPS),whose sensing elements are excitable cells,can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed.Here we report a kind of neurochip with rat pheochromocytoma(PC12) cells hybrid with LAPS and a method of de-noising signals based on wavelet transform.Cells were cultured on LAPS for several days to form networks,and we then used LAPS system to detect the extracellular potentials with signals de-noised according to decomposition in the time-frequency space.The signal was decomposed into various scales,and coefficients were processed based on the properties of each layer.At last,signal was reconstructed based on the new coefficients.The results show that after de-noising,baseline drift is removed and signal-to-noise ratio is increased.It suggests that the neurochip of PC12 cells coupled to LAPS is stable and suitable for long-term and non-invasive measurement of cell electrophysiological properties with wavelet transform,taking advantage of its time-frequency localization analysis to reduce noise.
基金Project supported by the National Natural Science Foundation of China (Nos. 30627002 and 60725102)the Interdisciplinary Research Foundation of Zhejiang University (No. 2009-15), China
文摘Titanium dioxide (TiO2) thin film was deposited on the surface of the light addressable potentiometric sensor (LAPS) to modify the sensor surface for the non-labeled detection of DNA molecules. To evaluate the effect of ultraviolet (UV) treatment on the silanization level of TiO2 thin film by 3-aminopropyltriethoxysilane (APTS),fluorescein isothiocyanate (FITC) was used to label the amine group on the end of APTS immobilized onto the TiO2 thin film. We found that,with UV irradiation,the silanization level of the irradiated area of the TiO2 film was improved compared with the non-irradiated area under well-controlled conditions. This result indicates that TiO2 can act as a coating material on the biosensor surface to improve the effect and efficiency of the covalent immobilization of biomolecules on the sensor surface. The artificially synthesized probe DNA molecules were covalently linked onto the surface of TiO2 film. The hybridization of probe DNA and target DNA was monitored by the recording of I-V curves that shift along the voltage axis during the process of reaction. A significant LAPS signal can be detected at 10 μmol/L of target DNA sample.
基金supported by the National Natural Science Foundation ofChina (No. 60725102)the Natural Science Foundation of Zhejiang Province, China (No. R205505)
文摘This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based biosensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed on the basis of the light addressable potentiometric sensor (LAPS), in which rat OSNs were cultured on the surface of LAPS chip and served as sensing elements. LY294002, the specific inhibitor of phosphatidylinositol 3-kinase (PI3K), was used to enhance the responses of OSNs to odorants. The responses of OSNs to odorants with and without the treatment of LY294002 were recorded by LAPS. The results show that the enhancive effect of LY294002 was recorded efficiently by LAPS and the responses of this OSNs-LAPS hybrid biosensor were enhanced by LY294002 by about 1.5-fold. We conclude that this method can enhance the responses of OSNs-LAPS hybrid biosensors, which may provide a novel strategy for the bioelectrical signal monitor of OSNs in biosensors. It is also suggested that this strategy may be applicable to other kinds of OSNs-based biosensors for cellular activity detection, such as microelectrode array (MEA) and field effect transistor (FET).