期刊文献+
共找到11,910篇文章
< 1 2 250 >
每页显示 20 50 100
Growth,leaf anatomy,and photosynthesis of cotton(Gossypium hirsutum L.)seedlings in response to four light-emitting diodes and high pressure sodium lamp 被引量:1
1
作者 ZHANG Yichi LIAO Baopeng +3 位作者 LI Fangjun ENEJI AEgrinya DU Mingwei TIAN Xiaoli 《Journal of Cotton Research》 CAS 2024年第1期79-89,共11页
Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamp... Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage. 展开更多
关键词 Cotton seedling light-emitting diodes BIOMASS Palisade cell PHOTOSYNTHESIS
下载PDF
Flexible perovskite light-emitting diodes for display applications and beyond
2
作者 Yongqi Zhang Shahbaz Ahmed Khan +1 位作者 Dongxiang Luo Guijun Li 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期8-25,共18页
The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical pro... The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed. 展开更多
关键词 metal halide perovskite flexible light-emitting diodes optical properties mechanical flexibility DISPLAY
下载PDF
Enhancing the Performance of Perovskite Light-Emitting Diodes via Synergistic Effect of Defect Passivation and Dielectric Screening
3
作者 Xuanchi Yu Jia Guo +11 位作者 Yulin Mao Chengwei Shan Fengshou Tian Bingheng Meng Zhaojin Wang Tianqi Zhang Aung Ko Ko Kyaw Shuming Chen Xiaowei Sun Kai Wang Rui Chen Guichuan Xing 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期244-256,共13页
Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the pres... Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method. 展开更多
关键词 Synergistic passivation strategy Defects passivation Dielectric screening Perovskite light-emitting diodes
下载PDF
Physico−mathematical model of the voltage−current characteristics of light-emitting diodes with quantum wells based on the Sah−Noyce−Shockley recombination mechanism
4
作者 Fedor I.Manyakhin Dmitry O.Varlamov +3 位作者 Vladimir P.Krylov Lyudmila O.Morketsova Arkady A.Skvortsov Vladimir K.Nikolaev 《Journal of Semiconductors》 EI CAS CSCD 2024年第8期25-33,共9页
Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS reco... Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4. 展开更多
关键词 light-emitting diodes with quantum wells voltage−current relation nonideality factor recombination mechanism Sah−Noyce−Shockley model
下载PDF
Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
5
作者 Zhi Wu Leimeng Xu +1 位作者 Jindi Wang Jizhong Song 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第9期54-63,共10页
Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-bas... Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications. 展开更多
关键词 quantum dots Ag-In-Ga-S dual emission white light-emitting diodes
下载PDF
Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer 被引量:1
6
作者 曹一伟 吕全江 +4 位作者 杨天鹏 米亭亭 王小文 刘伟 刘军林 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期690-696,共7页
We investigate the polarization-induced doping in the gradient variation of Al composition in the pAl_(0.75)Ga_(0.25)N/Al_xGa_(1-x)N hole injection layer(HIL)for deep ultraviolet light-emitting diodes(DUV-LEDs)with an... We investigate the polarization-induced doping in the gradient variation of Al composition in the pAl_(0.75)Ga_(0.25)N/Al_xGa_(1-x)N hole injection layer(HIL)for deep ultraviolet light-emitting diodes(DUV-LEDs)with an ultrathin p-GaN(4 nm)ohmic contact layer capable of emitting 277 nm.The experimental results show that the external quantum efficiency(EQE)and wall plug efficiency(WPE)of the structure graded from 0.75 to 0.55 in the HIL reach 5.49%and 5.04%,which are improved significantly by 182%and 209%,respectively,compared with the structure graded from 0.75 to 0.45,exhibiting a tremendous improvement.Both theoretical speculations and simulation results support that the larger the difference between 0.75 and x in the HIL,the higher the hole concentration that should be induced;thus,the DUV-LED has a higher internal quantum efficiency(IQE).Meanwhile,as the value of x decreases,the absorption of the DUV light emitted from the active region by the HIL is enhanced,reducing the light extraction efficiency(LEE).The IQE and LEE together affect the EQE performance of DUV-LEDs.To trade off the contradiction between the enhanced IQE and decreased LEE caused by the decrease in Al composition,the Al composition in the HIL was optimized through theoretical calculations and experiments. 展开更多
关键词 deep ultraviolet light-emitting diode(DUV-LED) polarization-induced doping ALGAN light extraction efficiency
下载PDF
Enhancing performance of inverted quantum-dot light-emitting diodes based on a solution-processed hole transport layer via ligand treatment
7
作者 Depeng Li Jingrui Ma +8 位作者 Wenbo Liu Guohong Xiang Xiangwei Qu Siqi Jia Mi Gu Jiahao Wei Pai Liu Kai Wang Xiaowei Sun 《Journal of Semiconductors》 EI CAS CSCD 2023年第9期68-74,共7页
The performance of inverted quantum-dot light-emitting diodes(QLEDs)based on solution-processed hole transport layers(HTLs)has been limited by the solvent-induced damage to the quantum dot(QD)layer during the spin-coa... The performance of inverted quantum-dot light-emitting diodes(QLEDs)based on solution-processed hole transport layers(HTLs)has been limited by the solvent-induced damage to the quantum dot(QD)layer during the spin-coating of the HTL.The lack of compatibility between the HTL’s solvent and the QD layer results in an uneven surface,which negatively impacts the overall device performance.In this work,we develop a novel method to solve this problem by modifying the QD film with 1,8-diaminooctane to improve the resistance of the QD layer for the HTL’s solvent.The uniform QD layer leads the inverted red QLED device to achieve a low turn-on voltage of 1.8 V,a high maximum luminance of 105500 cd/m2,and a remarkable maximum external quantum efficiency of 13.34%.This approach releases the considerable potential of HTL materials selection and offers a promising avenue for the development of high-performance inverted QLEDs. 展开更多
关键词 quantum dots quantum-dot light-emitting diodes inverted structure ligand treatment
下载PDF
Impedance spectroscopy for quantum dot light-emitting diodes
8
作者 Xiangwei Qu Xiaowei Sun 《Journal of Semiconductors》 EI CAS CSCD 2023年第9期26-38,共13页
Impedance spectroscopy has been increasingly employed in quantum dot light-emitting diodes(QLEDs)to investigate the charge dynamics and device physics.In this review,we introduce the mathematical basics of impedance s... Impedance spectroscopy has been increasingly employed in quantum dot light-emitting diodes(QLEDs)to investigate the charge dynamics and device physics.In this review,we introduce the mathematical basics of impedance spectroscopy that applied to QLEDs.In particular,we focus on the Nyquist plot,Mott-Schottky analysis,capacitance-frequency and capacitance-voltage characteristics,and the d C/d V measurement of the QLEDs.These impedance measurements can provide critical information on electrical parameters such as equivalent circuit models,characteristic time constants,charge injection and recombination points,and trap distribution of the QLEDs.However,this paper will also discuss the disadvantages and limitations of these measurements.Fundamentally,this review provides a deeper understanding of the device physics of QLEDs through the application of impedance spectroscopy,offering valuable insights into the analysis of performance loss and degradation mechanisms of QLEDs. 展开更多
关键词 quantum dot light-emitting diode impedance spectroscopy equivalent circuit model charge dynamics
下载PDF
Improving the films quality of Sn-based perovskites through additive treatment for high-performance light-emitting diodes
9
作者 Ying Li Guozhen Shen 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期11-12,共2页
Hybrid lead halide perovskites have received great attention in the field of light-emitting diodes(LEDs)owing to their excellent optoelectronic properties,low cost,and high color purity.To data,the external quantum ef... Hybrid lead halide perovskites have received great attention in the field of light-emitting diodes(LEDs)owing to their excellent optoelectronic properties,low cost,and high color purity.To data,the external quantum efficiency(EQE)of lead halide perovskites LEDs has been reported to exceed 20%[1].Even so,the toxicity of conventional lead has cast a gloomy shadow over their further application. 展开更多
关键词 diodeS OPTOELECTRONIC PEROVSKITE
下载PDF
Interface engineering yields efficient perovskite light-emitting diodes
10
作者 Rashid Khan Guangyi Shi +2 位作者 Wenjing Chen Zhengguo Xiao Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期4-7,共4页
Metal-halide perovskites(MHPs)have emerged as a new class of semiconductors used in perovskite solar cells(PSCs)[1-5],perovskite light-emitting diodes(PeLEDs)[6-12],photo/X-ray detectors[13-16],and memristors[17,18].P... Metal-halide perovskites(MHPs)have emerged as a new class of semiconductors used in perovskite solar cells(PSCs)[1-5],perovskite light-emitting diodes(PeLEDs)[6-12],photo/X-ray detectors[13-16],and memristors[17,18].Pe LEDs can emit different light with high purity[19,20]. 展开更多
关键词 diodeS EMITTING LEDS
下载PDF
Numerical Study of Optimization of Layer Thickness in Bilayer Organic Light-Emitting Diodes 被引量:3
11
作者 彭应全 张磊 张旭 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2003年第5期454-460,共7页
A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and c... A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed. 展开更多
关键词 organic light-emitting diodes BILAYER OPTIMIZATION
下载PDF
Proton‑Prompted Ligand Exchange to Achieve High‑Efficiency CsPbI_(3) Quantum Dot Light‑Emitting Diodes 被引量:1
12
作者 Yanming Li Ming Deng +2 位作者 Xuanyu Zhang Lei Qian Chaoyu Xiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期53-62,共10页
CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improv... CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improvement of device performance.Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control.Here,we proposed a new ligand exchange strategy using a proton-prompted insitu exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI_(3)QDs.This exchange strategy maintained the size and morphology of CsPbI_(3)QDs and improved the optical properties and the conductivity of CsPbI_(3)QDs films.As a result,high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45%and an operational half-life of 10.79 h. 展开更多
关键词 CsPbI_(3) perovskite quantum dots light-emitting diodes Ligand exchange Proton-prompted in-situ exchange
下载PDF
Sweat-permeable electronic patches by designing threedimensional liquid diodes 被引量:1
13
作者 Kangdi Guan Di Chen +1 位作者 Qilin Hua Guozhen Shen 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期2-5,共4页
Wearable electronics face a significant challenge related to the limited permeability of electronic materials/devices.This issue results in sweat accumulation across the interface of the device and skin following a sp... Wearable electronics face a significant challenge related to the limited permeability of electronic materials/devices.This issue results in sweat accumulation across the interface of the device and skin following a specific period of use[1−3].Not only does it bring about discomfort for users regarding thermos-physiology,but it also has a detrimental effect on interface adhesion and signal quality,thus hindering exact sig-nal monitoring during prolonged periods[4−6]. 展开更多
关键词 diodeS ELECTRONIC interface
下载PDF
Recent Advances in Patterning Strategies for Full‑Color Perovskite Light‑Emitting Diodes
14
作者 Gwang Heon Lee Kiwook Kim +2 位作者 Yunho Kim Jiwoong Yang Moon Kee Choi 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期99-137,共39页
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with rem... Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with remarkably narrow bandwidths,high quantum yield,and solution processability.Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes(PeLEDs)to their theoretical limits,their current fabrication using the spincoating process poses limitations for fabrication of full-color displays.To integrate PeLEDs into full-color display panels,it is crucial to pattern red–green–blue(RGB)perovskite pixels,while mitigating issues such as cross-contamination and reductions in luminous efficiency.Herein,we present state-of-the-art patterning technologies for the development of full-color PeLEDs.First,we highlight recent advances in the development of efficient PeLEDs.Second,we discuss various patterning techniques of MPHs(i.e.,photolithography,inkjet printing,electron beam lithography and laserassisted lithography,electrohydrodynamic jet printing,thermal evaporation,and transfer printing)for fabrication of RGB pixelated displays.These patterning techniques can be classified into two distinct approaches:in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals.This review highlights advancements and limitations in patterning techniques for PeLEDs,paving the way for integrating PeLEDs into full-color panels. 展开更多
关键词 PEROVSKITE light-emitting diode Full-color display High-resolution patterning ELECTROLUMINESCENCE
下载PDF
Wettability Gradient-Induced Diode:MXene-Engineered Membrane for Passive-Evaporative Cooling 被引量:1
15
作者 Leqi Lei Shuo Meng +4 位作者 Yifan Si Shuo Shi Hanbai Wu Jieqiong Yang Jinlian Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期382-397,共16页
Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water mo... Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water moisture transportation capacity,which impacts on their thermophysiological comfort.Herein,we designed a wettability-gradient-induced-diode(WGID)membrane achieving by MXene-engineered electrospun technology,which could facilitate heat dissipation and moisture-wicking transportation.As a result,the obtained WGID membrane could obtain a cooling temperature of 1.5℃ in the“dry”state,and 7.1℃ in the“wet”state,which was ascribed to its high emissivity of 96.40%in the MIR range,superior thermal conductivity of 0.3349 W m^(-1) K^(-1)(based on radiation-and conduction-controlled mechanisms),and unidirectional moisture transportation property.The proposed design offers an approach for meticulously engineering electrospun membranes with enhanced heat dissipation and moisture transportation,thereby paving the way for developing more efficient and comfortable thermoregulatory textiles in a high-humidity microenvironment. 展开更多
关键词 Passive-evaporative cooling MXene Electrospun membrane Wettability gradient diode
下载PDF
GaN based ultraviolet laser diodes
16
作者 Jing Yang Degang Zhao +9 位作者 Zongshun Liu Yujie Huang Baibin Wang Xiaowei Wang Yuheng Zhang Zhenzhuo Zhang Feng Liang Lihong Duan Hai Wang Yongsheng Shi 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期6-15,共10页
In the past few years,many groups have focused on the research and development of GaN-based ultraviolet laser diodes(UV LDs).Great progresses have been achieved even though many challenges exist.In this article,we ana... In the past few years,many groups have focused on the research and development of GaN-based ultraviolet laser diodes(UV LDs).Great progresses have been achieved even though many challenges exist.In this article,we analyze the challenges of developing GaN-based ultraviolet laser diodes,and the approaches to improve the performance of ultraviolet laser diode are reviewed.With these techniques,room temperature(RT)pulsed oscillation of AlGaN UVA(ultraviolet A)LD has been realized,with a lasing wavelength of 357.9 nm.Combining with the suppression of thermal effect,the high output power of 3.8 W UV LD with a lasing wavelength of 386.5 nm was also fabricated. 展开更多
关键词 diodeS LASER GAN
下载PDF
Gallium nitride blue laser diodes with pulsed current operation exceeding 15 W in optical output power
17
作者 Shuiqing Li Qiangqiang Guo +13 位作者 Heqing Deng Zhibai Zhong Jinjian Zheng LiXun Yang Jiangyong Zhang Changzheng Sun Zhibiao Hao Bing Xiong Yanjun Han Jian Wang Hongtao Li Lin Gan Lai Wang Yi Luo 《Journal of Semiconductors》 EI CAS CSCD 2024年第11期13-17,共5页
Since Shuji Nakamura first demonstrated the nitride laser in 1996[1],the domain of semiconductor laser technology has undergone a period of remarkable growth[2,3].Al In Ga N-based diode lasers(LDs)have proven their ex... Since Shuji Nakamura first demonstrated the nitride laser in 1996[1],the domain of semiconductor laser technology has undergone a period of remarkable growth[2,3].Al In Ga N-based diode lasers(LDs)have proven their exceptional capabilities across a spectrum of pivotal applications,including high-density data storage,laser displays,laser lighting,and quantum technology[4]. 展开更多
关键词 LASER diodeS EXCEEDING
下载PDF
Light-emitting devices based on atomically thin MoSe_(2)
18
作者 Xinyu Zhang Xuewen Zhang +7 位作者 Hanwei Hu Vanessa Li Zhang Weidong Xiao Guangchao Shi Jingyuan Qiao Nan Huang Ting Yu Jingzhi Shang 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期19-35,共17页
Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillat... Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices. 展开更多
关键词 MoSe_(2) light-matter interaction EXCITON POLARITON light-emitting device
下载PDF
Flexible planar micro supercapacitor diode
19
作者 Yihui Ma Pei Tang +7 位作者 Zhenyuan Miao Wuyang Tan Qijun Wang Yuecong Chen Guosheng Li Qingyun Dou Xingbin Yan Lingling Shui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期429-435,I0011,共8页
Supercapacitor diode is a novel ion device that performs both supercapacitor energy storage and ion diode rectification functions.However,previously reported devices are limited by their large size and complex process... Supercapacitor diode is a novel ion device that performs both supercapacitor energy storage and ion diode rectification functions.However,previously reported devices are limited by their large size and complex processes.In this work,we demonstrate a screen-printed micro supercapacitor diode(MCAPode)that based on the insertion of a finger mode with spinel ZnCo_(2)O_(4) as cathode and activated carbon as anode for the first time,and featuring an excellent area specific capacitance(1.21 mF cm^(-2)at 10 mV s^(-1))and high rectification characteristics(rectification ratioⅠof 11.99 at 40 mV s^(-1)).Taking advantage of the ionic gel electrolyte,which provides excellent stability during repeated flexing and at high temperatures.In addition,MCAPode exhibits excellent electrochemical performance and rectification capability in"AND"and"OR"logic gates.These findings provide practical solutions for future expansion of micro supercapacitor diode applications. 展开更多
关键词 Micro devices Supercapacitor diodes Screen-printing RECTIFICATION Logic gates
下载PDF
High-efficiency ultra-fast all-optical photonic crystal diode based on the lateral-coupled nonlinear elliptical defect
20
作者 李大星 刘凯柱 +3 位作者 余春龙 张括 刘跃钦 冯帅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期453-458,共6页
An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod... An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2. 展开更多
关键词 photonic crystal all-optical diode Fano cavity unidirectional transmission
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部