Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of expe...Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of experts.A system is proposed to alleviate this challenge that uses transfer learning techni-ques to classify the cephalopods automatically.In the proposed method,only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition.First,the efficiency of the chosen models is determined by evaluating their performance and comparing thefindings.Second,the models arefine-tuned by adding dense layers and tweaking hyperparameters to improve the classification of accuracy.The models also employ a well-tuned Rectified Adam optimizer to increase the accuracy rates.Third,Adam with Gradient Cen-tralisation(RAdamGC)is proposed and used infine-tuned models to reduce the training time.The framework enables an Internet of Things(IoT)or embedded device to perform the classification tasks by embedding a suitable lightweight pre-trained network.Thefine-tuned models,MobileNetV2,InceptionV3,and NASNet Mobile have achieved a classification accuracy of 89.74%,87.12%,and 89.74%,respectively.Thefindings have indicated that thefine-tuned models can classify different kinds of cephalopods.The results have also demonstrated that there is a significant reduction in the training time with RAdamGC.展开更多
There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured roa...There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured road extraction models.Unstructured road extraction algorithms based on deep learning have problems such as high model complexity,high computational cost,and the inability to adapt to current edge computing devices.Therefore,it is best to use lightweight network models.Considering the need for lightweight models and the characteristics of unstructured roads with different pattern shapes,such as blocks and strips,a TMB(Triple Multi-Block)feature extraction module is proposed,and the overall structure of the TMBNet network is described.The TMB module was compared with SS-nbt,Non-bottleneck-1D,and other modules via experiments.The feasibility and effectiveness of the TMB module design were proven through experiments and visualizations.The comparison experiment,using multiple convolution kernel categories,proved that the TMB module can improve the segmentation accuracy of the network.The comparison with different semantic segmentation networks demonstrates that the TMBNet network has advantages in terms of unstructured road extraction.展开更多
Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and...Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and maintaining the devices,it is difficult to apply them to intensive weather phenomenon recognition.Moreover,advanced machine learning models such as Convolutional Neural Networks(CNNs)have shown a lot of promise in meteorology,but these models also require intensive computation and large memory,which make it difficult to use them in reality.In practice,lightweight models are often used to solve such problems.However,lightweight models often result in significant performance losses.To this end,after taking a deep dive into a large number of lightweight models and summarizing their shortcomings,we propose a novel lightweight CNNs model which is constructed based on new building blocks.The experimental results show that the model proposed in this paper has comparable performance with the mainstream non-lightweight model while also saving 25 times of memory consumption.Such memory reduction is even better than that of existing lightweight models.展开更多
In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of th...In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets.展开更多
For the purpose of monitoring apple fruits effectively throughout the entire growth period in smart orchards.A lightweight model named YOLOv8n-ShuffleNetv2-Ghost-SE was proposed.The ShuffleNetv2 basic modules and down...For the purpose of monitoring apple fruits effectively throughout the entire growth period in smart orchards.A lightweight model named YOLOv8n-ShuffleNetv2-Ghost-SE was proposed.The ShuffleNetv2 basic modules and down-sampling modules were alternately connected,replacing the Backbone of YOLOv8n model.The Ghost modules replaced the Conv modules and the C2fGhost modules replaced the C2f modules in the Neck part of the YOLOv8n.ShuffleNetv2 reduced the memory access cost through channel splitting operations.The Ghost module combined linear and non-linear convolutions to reduce the network computation cost.The Wise-IoU(WIoU)replaced the CIoU for calculating the bounding box regression loss,which dynamically adjusted the anchor box quality threshold and gradient gain allocation strategy,optimizing the size and position of predicted bounding boxes.The Squeeze-and-Excitation(SE)was embedded in the Backbone and Neck part of YOLOv8n to enhance the representation ability of feature maps.The algorithm ensured high precision while having small model size and fast detection speed,which facilitated model migration and deployment.Using 9652 images validated the effectiveness of the model.The YOLOv8n-ShuffleNetv2-Ghost-SE model achieved Precision of 94.1%,Recall of 82.6%,mean Average Precision of 91.4%,model size of 2.6 MB,parameters of 1.18 M,FLOPs of 3.9 G,and detection speed of 39.37 fps.The detection speeds on the Jetson Xavier NX development board were 3.17 fps.Comparisons with advanced models including Faster R-CNN,SSD,YOLOv5s,YOLOv7‑tiny,YOLOv8s,YOLOv8n,MobileNetv3_small-Faster,MobileNetv3_small-Ghost,ShuflleNetv2-Faster,ShuflleNetv2-Ghost,ShuflleNetv2-Ghost-CBAM,ShuflleNetv2-Ghost-ECA,and ShuflleNetv2-Ghost-CA demonstrated that the method achieved smaller model and faster detection speed.The research can provide reference for the development of smart devices in apple orchards.展开更多
With the rapid development of the Internet of Things(IoT),the automation of edge-side equipment has emerged as a significant trend.The existing fault diagnosismethods have the characteristics of heavy computing and st...With the rapid development of the Internet of Things(IoT),the automation of edge-side equipment has emerged as a significant trend.The existing fault diagnosismethods have the characteristics of heavy computing and storage load,and most of them have computational redundancy,which is not suitable for deployment on edge devices with limited resources and capabilities.This paper proposes a novel two-stage edge-side fault diagnosis method based on double knowledge distillation.First,we offer a clustering-based self-knowledge distillation approach(Cluster KD),which takes the mean value of the sample diagnosis results,clusters them,and takes the clustering results as the terms of the loss function.It utilizes the correlations between faults of the same type to improve the accuracy of the teacher model,especially for fault categories with high similarity.Then,the double knowledge distillation framework uses ordinary knowledge distillation to build a lightweightmodel for edge-side deployment.We propose a two-stage edge-side fault diagnosismethod(TSM)that separates fault detection and fault diagnosis into different stages:in the first stage,a fault detection model based on a denoising auto-encoder(DAE)is adopted to achieve fast fault responses;in the second stage,a diverse convolutionmodel with variance weighting(DCMVW)is used to diagnose faults in detail,extracting features frommicro andmacro perspectives.Through comparison experiments conducted on two fault datasets,it is proven that the proposed method has high accuracy,low delays,and small computation,which is suitable for intelligent edge-side fault diagnosis.In addition,experiments show that our approach has a smooth training process and good balance.展开更多
In this paper, a deep learning-based method is proposed for crowdcountingproblems. Specifically, by utilizing the convolution kernel densitymap, the ground truth is generated dynamically to enhance the featureextracti...In this paper, a deep learning-based method is proposed for crowdcountingproblems. Specifically, by utilizing the convolution kernel densitymap, the ground truth is generated dynamically to enhance the featureextractingability of the generator model. Meanwhile, the “cross stage partial”module is integrated into congested scene recognition network (CSRNet) toobtain a lightweight network model. In addition, to compensate for the accuracydrop owing to the lightweight model, we take advantage of “structuredknowledge transfer” to train the model in an end-to-end manner. It aimsto accelerate the fitting speed and enhance the learning ability of the studentmodel. The crowd-counting system solution for edge computing is alsoproposed and implemented on an embedded device equipped with a neuralprocessing unit. Simulations demonstrate the performance improvement ofthe proposed solution in terms of model size, processing speed and accuracy.The performance on the Venice dataset shows that the mean absolute error(MAE) and the root mean squared error (RMSE) of our model drop by32.63% and 39.18% compared with CSRNet. Meanwhile, the performance onthe ShanghaiTech PartB dataset reveals that the MAE and the RMSE of ourmodel are close to those of CSRNet. Therefore, we provide a novel embeddedplatform system scheme for public safety pre-warning applications.展开更多
Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for...Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s.展开更多
To avoid colliding with trees during its operation,a lawn mower robot must detect the trees.Existing tree detection methods suffer from low detection accuracy(missed detection)and the lack of a lightweight model.In th...To avoid colliding with trees during its operation,a lawn mower robot must detect the trees.Existing tree detection methods suffer from low detection accuracy(missed detection)and the lack of a lightweight model.In this study,a dataset of trees was constructed on the basis of a real lawn environment.According to the theory of channel incremental depthwise convolution and residual suppression,the Embedded-A module is proposed,which expands the depth of the feature map twice to form a residual structure to improve the lightweight degree of the model.According to residual fusion theory,the Embedded-B module is proposed,which improves the accuracy of feature-map downsampling by depthwise convolution and pooling fusion.The Embedded YOLO object detection network is formed by stacking the embedded modules and the fusion of feature maps of different resolutions.Experimental results on the testing set show that the Embedded YOLO tree detection algorithm has 84.17%and 69.91%average precision values respectively for trunk and spherical tree,and 77.04% mean average precision value.The number of convolution parameters is 1.78×10^(6),and the calculation amount is 3.85 billion float operations per second.The size of weight file is 7.11MB,and the detection speed can reach 179 frame/s.This study provides a theoretical basis for the lightweight application of the object detection algorithm based on deep learning for lawn mower robots.展开更多
With the explosion of the number of meteoroid/orbital debris in terrestrial space in recent years, the detection environment of spacecraft becomes more complex. This phenomenon causes most current detection methods ba...With the explosion of the number of meteoroid/orbital debris in terrestrial space in recent years, the detection environment of spacecraft becomes more complex. This phenomenon causes most current detection methods based on machine learning intractable to break through the two difficulties of solving scale transformation problem of the targets in image and accelerating detection rate of high-resolution images. To overcome the two challenges, we propose a novel noncooperative target detection method using the framework of deep convolutional neural network.Firstly, a specific spacecraft simulation dataset using over one thousand images to train and test our detection model is built. The deep separable convolution structure is applied and combined with the residual network module to improve the network’s backbone. To count the different shapes of the spacecrafts in the dataset, a particular prior-box generation method based on K-means cluster algorithm is designed for each detection head with different scales. Finally, a comprehensive loss function is presented considering category confidence, box parameters, as well as box confidence. The experimental results verify that the proposed method has strong robustness against varying degrees of luminance change, and can suppress the interference caused by Gaussian noise and background complexity. The mean accuracy precision of our proposed method reaches 93.28%, and the global loss value is 13.252. The comparative experiment results show that under the same epoch and batchsize, the speed of our method is compressed by about 20% in comparison of YOLOv3, the detection accuracy is increased by about 12%, and the size of the model is reduced by nearly 50%.展开更多
Pointwise convolution is usually utilized to expand or squeeze features in modern lightweight deep models.However,it takes up most of the overall computational cost(usually more than 90%).This paper proposes a novel P...Pointwise convolution is usually utilized to expand or squeeze features in modern lightweight deep models.However,it takes up most of the overall computational cost(usually more than 90%).This paper proposes a novel Poker module to expand features by taking advantage of cheap depthwise convolution.As a result,the Poker module can greatly reduce the computational cost,and meanwhile generate a large number of effective features to guarantee the performance.The proposed module is standardized and can be employed wherever the feature expansion is needed.By varying the stride and the number of channels,different kinds of bottlenecks are designed to plug the proposed Poker module into the network.Thus,a lightweight model can be easily assembled.Experiments conducted on benchmarks reveal the effectiveness of our proposed Poker module.And our Poker Net models can reduce the computational cost by 7.1%-15.6%.Poker Net models achieve comparable or even higher recognition accuracy than previous state-of-the-art(SOTA)models on the Image Net ILSVRC2012 classification dataset.Code is available at https://github.com/diaomin/pokernet.展开更多
In recent years,with the rapid development of Internet and hardware technologies,the number of Internet of things(IoT)devices has grown exponentially.However,IoT devices are constrained by power consumption,making the...In recent years,with the rapid development of Internet and hardware technologies,the number of Internet of things(IoT)devices has grown exponentially.However,IoT devices are constrained by power consumption,making the security of IoT vulnerable.Malware such as Botnets and Worms poses significant security threats to users and enterprises alike.Deep learning models have demonstrated strong performance in various tasks across different domains,leading to their application in malicious software detection.Nevertheless,due to the power constraints of IoT devices,the well-performanced large models are not suitable for IoT malware detection.In this paper we propose a malware detection method based on Markov images and MobileNet,offering a cost-effective,efficient,and high-performing solution for malware detection.Additionally,this paper innovatively analyzes the robustness of opcode sequences.展开更多
文摘Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of experts.A system is proposed to alleviate this challenge that uses transfer learning techni-ques to classify the cephalopods automatically.In the proposed method,only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition.First,the efficiency of the chosen models is determined by evaluating their performance and comparing thefindings.Second,the models arefine-tuned by adding dense layers and tweaking hyperparameters to improve the classification of accuracy.The models also employ a well-tuned Rectified Adam optimizer to increase the accuracy rates.Third,Adam with Gradient Cen-tralisation(RAdamGC)is proposed and used infine-tuned models to reduce the training time.The framework enables an Internet of Things(IoT)or embedded device to perform the classification tasks by embedding a suitable lightweight pre-trained network.Thefine-tuned models,MobileNetV2,InceptionV3,and NASNet Mobile have achieved a classification accuracy of 89.74%,87.12%,and 89.74%,respectively.Thefindings have indicated that thefine-tuned models can classify different kinds of cephalopods.The results have also demonstrated that there is a significant reduction in the training time with RAdamGC.
基金Supported by National Natural Science Foundation of China(Grant Nos.62261160575,61991414,61973036)Technical Field Foundation of the National Defense Science and Technology 173 Program of China(Grant Nos.20220601053,20220601030)。
文摘There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured road extraction models.Unstructured road extraction algorithms based on deep learning have problems such as high model complexity,high computational cost,and the inability to adapt to current edge computing devices.Therefore,it is best to use lightweight network models.Considering the need for lightweight models and the characteristics of unstructured roads with different pattern shapes,such as blocks and strips,a TMB(Triple Multi-Block)feature extraction module is proposed,and the overall structure of the TMBNet network is described.The TMB module was compared with SS-nbt,Non-bottleneck-1D,and other modules via experiments.The feasibility and effectiveness of the TMB module design were proven through experiments and visualizations.The comparison experiment,using multiple convolution kernel categories,proved that the TMB module can improve the segmentation accuracy of the network.The comparison with different semantic segmentation networks demonstrates that the TMBNet network has advantages in terms of unstructured road extraction.
基金This paper is supported by the following funds:National Key R&D Program of China(2018YFF01010100)National natural science foundation of China(61672064)+1 种基金Basic Research Program of Qinghai Province under Grants No.2020-ZJ-709Advanced information network Beijing laboratory(PXM2019_014204_500029).
文摘Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and maintaining the devices,it is difficult to apply them to intensive weather phenomenon recognition.Moreover,advanced machine learning models such as Convolutional Neural Networks(CNNs)have shown a lot of promise in meteorology,but these models also require intensive computation and large memory,which make it difficult to use them in reality.In practice,lightweight models are often used to solve such problems.However,lightweight models often result in significant performance losses.To this end,after taking a deep dive into a large number of lightweight models and summarizing their shortcomings,we propose a novel lightweight CNNs model which is constructed based on new building blocks.The experimental results show that the model proposed in this paper has comparable performance with the mainstream non-lightweight model while also saving 25 times of memory consumption.Such memory reduction is even better than that of existing lightweight models.
文摘In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets.
基金supported by the National Key Research and Development Program of China(2019YFD1002401)the National Natural Science Foundation of China(31701326).
文摘For the purpose of monitoring apple fruits effectively throughout the entire growth period in smart orchards.A lightweight model named YOLOv8n-ShuffleNetv2-Ghost-SE was proposed.The ShuffleNetv2 basic modules and down-sampling modules were alternately connected,replacing the Backbone of YOLOv8n model.The Ghost modules replaced the Conv modules and the C2fGhost modules replaced the C2f modules in the Neck part of the YOLOv8n.ShuffleNetv2 reduced the memory access cost through channel splitting operations.The Ghost module combined linear and non-linear convolutions to reduce the network computation cost.The Wise-IoU(WIoU)replaced the CIoU for calculating the bounding box regression loss,which dynamically adjusted the anchor box quality threshold and gradient gain allocation strategy,optimizing the size and position of predicted bounding boxes.The Squeeze-and-Excitation(SE)was embedded in the Backbone and Neck part of YOLOv8n to enhance the representation ability of feature maps.The algorithm ensured high precision while having small model size and fast detection speed,which facilitated model migration and deployment.Using 9652 images validated the effectiveness of the model.The YOLOv8n-ShuffleNetv2-Ghost-SE model achieved Precision of 94.1%,Recall of 82.6%,mean Average Precision of 91.4%,model size of 2.6 MB,parameters of 1.18 M,FLOPs of 3.9 G,and detection speed of 39.37 fps.The detection speeds on the Jetson Xavier NX development board were 3.17 fps.Comparisons with advanced models including Faster R-CNN,SSD,YOLOv5s,YOLOv7‑tiny,YOLOv8s,YOLOv8n,MobileNetv3_small-Faster,MobileNetv3_small-Ghost,ShuflleNetv2-Faster,ShuflleNetv2-Ghost,ShuflleNetv2-Ghost-CBAM,ShuflleNetv2-Ghost-ECA,and ShuflleNetv2-Ghost-CA demonstrated that the method achieved smaller model and faster detection speed.The research can provide reference for the development of smart devices in apple orchards.
基金supported by the National Key R&D Program of China(2019YFB2103202).
文摘With the rapid development of the Internet of Things(IoT),the automation of edge-side equipment has emerged as a significant trend.The existing fault diagnosismethods have the characteristics of heavy computing and storage load,and most of them have computational redundancy,which is not suitable for deployment on edge devices with limited resources and capabilities.This paper proposes a novel two-stage edge-side fault diagnosis method based on double knowledge distillation.First,we offer a clustering-based self-knowledge distillation approach(Cluster KD),which takes the mean value of the sample diagnosis results,clusters them,and takes the clustering results as the terms of the loss function.It utilizes the correlations between faults of the same type to improve the accuracy of the teacher model,especially for fault categories with high similarity.Then,the double knowledge distillation framework uses ordinary knowledge distillation to build a lightweightmodel for edge-side deployment.We propose a two-stage edge-side fault diagnosismethod(TSM)that separates fault detection and fault diagnosis into different stages:in the first stage,a fault detection model based on a denoising auto-encoder(DAE)is adopted to achieve fast fault responses;in the second stage,a diverse convolutionmodel with variance weighting(DCMVW)is used to diagnose faults in detail,extracting features frommicro andmacro perspectives.Through comparison experiments conducted on two fault datasets,it is proven that the proposed method has high accuracy,low delays,and small computation,which is suitable for intelligent edge-side fault diagnosis.In addition,experiments show that our approach has a smooth training process and good balance.
文摘In this paper, a deep learning-based method is proposed for crowdcountingproblems. Specifically, by utilizing the convolution kernel densitymap, the ground truth is generated dynamically to enhance the featureextractingability of the generator model. Meanwhile, the “cross stage partial”module is integrated into congested scene recognition network (CSRNet) toobtain a lightweight network model. In addition, to compensate for the accuracydrop owing to the lightweight model, we take advantage of “structuredknowledge transfer” to train the model in an end-to-end manner. It aimsto accelerate the fitting speed and enhance the learning ability of the studentmodel. The crowd-counting system solution for edge computing is alsoproposed and implemented on an embedded device equipped with a neuralprocessing unit. Simulations demonstrate the performance improvement ofthe proposed solution in terms of model size, processing speed and accuracy.The performance on the Venice dataset shows that the mean absolute error(MAE) and the root mean squared error (RMSE) of our model drop by32.63% and 39.18% compared with CSRNet. Meanwhile, the performance onthe ShanghaiTech PartB dataset reveals that the MAE and the RMSE of ourmodel are close to those of CSRNet. Therefore, we provide a novel embeddedplatform system scheme for public safety pre-warning applications.
基金supported in part by the National Key Research and Development Program of China(No. 2018YFC0309104)the Construction System Science and Technology Project of Jiangsu Province (No.2021JH03)。
文摘Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s.
基金the National Natural Science Foundation of China (No.51275223)。
文摘To avoid colliding with trees during its operation,a lawn mower robot must detect the trees.Existing tree detection methods suffer from low detection accuracy(missed detection)and the lack of a lightweight model.In this study,a dataset of trees was constructed on the basis of a real lawn environment.According to the theory of channel incremental depthwise convolution and residual suppression,the Embedded-A module is proposed,which expands the depth of the feature map twice to form a residual structure to improve the lightweight degree of the model.According to residual fusion theory,the Embedded-B module is proposed,which improves the accuracy of feature-map downsampling by depthwise convolution and pooling fusion.The Embedded YOLO object detection network is formed by stacking the embedded modules and the fusion of feature maps of different resolutions.Experimental results on the testing set show that the Embedded YOLO tree detection algorithm has 84.17%and 69.91%average precision values respectively for trunk and spherical tree,and 77.04% mean average precision value.The number of convolution parameters is 1.78×10^(6),and the calculation amount is 3.85 billion float operations per second.The size of weight file is 7.11MB,and the detection speed can reach 179 frame/s.This study provides a theoretical basis for the lightweight application of the object detection algorithm based on deep learning for lawn mower robots.
基金supported by the National Natural Science Foundation of China(No.61473100)。
文摘With the explosion of the number of meteoroid/orbital debris in terrestrial space in recent years, the detection environment of spacecraft becomes more complex. This phenomenon causes most current detection methods based on machine learning intractable to break through the two difficulties of solving scale transformation problem of the targets in image and accelerating detection rate of high-resolution images. To overcome the two challenges, we propose a novel noncooperative target detection method using the framework of deep convolutional neural network.Firstly, a specific spacecraft simulation dataset using over one thousand images to train and test our detection model is built. The deep separable convolution structure is applied and combined with the residual network module to improve the network’s backbone. To count the different shapes of the spacecrafts in the dataset, a particular prior-box generation method based on K-means cluster algorithm is designed for each detection head with different scales. Finally, a comprehensive loss function is presented considering category confidence, box parameters, as well as box confidence. The experimental results verify that the proposed method has strong robustness against varying degrees of luminance change, and can suppress the interference caused by Gaussian noise and background complexity. The mean accuracy precision of our proposed method reaches 93.28%, and the global loss value is 13.252. The comparative experiment results show that under the same epoch and batchsize, the speed of our method is compressed by about 20% in comparison of YOLOv3, the detection accuracy is increased by about 12%, and the size of the model is reduced by nearly 50%.
基金supported by National Natural Science Foundation of China(Nos.61525306,61633021,61721004,61806194,U1803261 and 61976132)Major Project for New Generation of AI(No.2018AAA0100400)+2 种基金Beijing Nova Program(No.Z201100006820079)Shandong Provincial Key Research and Development Program(No.2019JZZY010119)CAS-AIR。
文摘Pointwise convolution is usually utilized to expand or squeeze features in modern lightweight deep models.However,it takes up most of the overall computational cost(usually more than 90%).This paper proposes a novel Poker module to expand features by taking advantage of cheap depthwise convolution.As a result,the Poker module can greatly reduce the computational cost,and meanwhile generate a large number of effective features to guarantee the performance.The proposed module is standardized and can be employed wherever the feature expansion is needed.By varying the stride and the number of channels,different kinds of bottlenecks are designed to plug the proposed Poker module into the network.Thus,a lightweight model can be easily assembled.Experiments conducted on benchmarks reveal the effectiveness of our proposed Poker module.And our Poker Net models can reduce the computational cost by 7.1%-15.6%.Poker Net models achieve comparable or even higher recognition accuracy than previous state-of-the-art(SOTA)models on the Image Net ILSVRC2012 classification dataset.Code is available at https://github.com/diaomin/pokernet.
基金This work was supported by the National Key R&D Program of China under Grant 2020YFB1807503 and NSFC Fund under Grant U20A20156.
文摘In recent years,with the rapid development of Internet and hardware technologies,the number of Internet of things(IoT)devices has grown exponentially.However,IoT devices are constrained by power consumption,making the security of IoT vulnerable.Malware such as Botnets and Worms poses significant security threats to users and enterprises alike.Deep learning models have demonstrated strong performance in various tasks across different domains,leading to their application in malicious software detection.Nevertheless,due to the power constraints of IoT devices,the well-performanced large models are not suitable for IoT malware detection.In this paper we propose a malware detection method based on Markov images and MobileNet,offering a cost-effective,efficient,and high-performing solution for malware detection.Additionally,this paper innovatively analyzes the robustness of opcode sequences.