Exclusively Brazilian, the Caatinga biome has been thus far a place of very few studies on the Basidiomycetes fungi. Due to its semiarid climate, fungi found in the region are likely to carry lignolytic enzymes which ...Exclusively Brazilian, the Caatinga biome has been thus far a place of very few studies on the Basidiomycetes fungi. Due to its semiarid climate, fungi found in the region are likely to carry lignolytic enzymes which hold biotechnological potential to be used in industrial processes of agro-industrial residue bioconversion. This study performed a response surface statistical planning to optimize the secretion of enzymes such as laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP) by Lentinus crinitus. Three variables were under analysis: different concentrations of barley and cassava residue, pH and temperature. MnP enzyme showed the highest enzymatic activity rate (23.5 IU/L). Additionally, MnP had the best results of enzyme secretion for substrate composition of 50% barley and 50% cassava, at pH 7 and temperature at 28°C for a 28-day incubation period. However, further studies are pivotal to test the efficiency in lignin bioconversion by the enzymes synthesized in this work and also to establish their usage pattern on a large scale.展开更多
文摘Exclusively Brazilian, the Caatinga biome has been thus far a place of very few studies on the Basidiomycetes fungi. Due to its semiarid climate, fungi found in the region are likely to carry lignolytic enzymes which hold biotechnological potential to be used in industrial processes of agro-industrial residue bioconversion. This study performed a response surface statistical planning to optimize the secretion of enzymes such as laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP) by Lentinus crinitus. Three variables were under analysis: different concentrations of barley and cassava residue, pH and temperature. MnP enzyme showed the highest enzymatic activity rate (23.5 IU/L). Additionally, MnP had the best results of enzyme secretion for substrate composition of 50% barley and 50% cassava, at pH 7 and temperature at 28°C for a 28-day incubation period. However, further studies are pivotal to test the efficiency in lignin bioconversion by the enzymes synthesized in this work and also to establish their usage pattern on a large scale.