Objective: To explore the effect of lower limb rehabilitation robot combined with task-oriented training on stroke patients and its influence on KFAROM score. Methods: 100 stroke patients with hemiplegia admitted to o...Objective: To explore the effect of lower limb rehabilitation robot combined with task-oriented training on stroke patients and its influence on KFAROM score. Methods: 100 stroke patients with hemiplegia admitted to our hospital from January 2023 to December 2023 were randomly divided into two groups, the control group (50 cases) was given task-oriented training assisted by nurses, and the observation group (50 cases) was given lower limb rehabilitation robot with task-oriented training. Lower limb balance, lower limb muscle strength, motor function, ankle function, knee flexion range of motion and walking ability were observed. Results: After treatment, the scores of BBS, quadriceps femoris and hamstrings in the observation group were significantly higher than those in the control group (P Conclusion: In the clinical treatment of stroke patients, the combination of task-oriented training and lower limb rehabilitation robot can effectively improve the lower limb muscle strength, facilitate the recovery of balance function, and have a significant effect on the recovery of motor function, which can improve the walking ability of stroke patients and the range of motion of knee flexion, and achieve more ideal therapeutic effectiveness.展开更多
Objective:To analyze the effect of limb rehabilitation therapy combined with transcranial magnetic stimulation therapy on muscle activity in patients with upper limb dysfunction after cerebral infarction(CI).Methods:3...Objective:To analyze the effect of limb rehabilitation therapy combined with transcranial magnetic stimulation therapy on muscle activity in patients with upper limb dysfunction after cerebral infarction(CI).Methods:320 patients with upper limb dysfunction after CI were selected,all of whom were treated in our hospital between June 2021 and June 2023.They were randomly grouped according to the lottery method into the control group(limb rehabilitation therapy,160 cases)and the intervention group(transcranial magnetic stimulation therapy+limb rehabilitation therapy,160 cases).The upper limb function scores,neuro-electrophysiological indicators,daily living ability scores,and quality of life scores of the two groups were compared.Results:Compared with the control group,upper limb function scores and daily living ability scores in the intervention group were higher after treatment,and the neuro-electrophysiological indicators of the intervention group were lower after treatment(P<0.05).Conclusion:Transcranial magnetic stimulation therapy combined with limb rehabilitation therapy has significant effects in patients with upper limb dysfunction after CI and is worthy of promotion and application.展开更多
Dyskinesia of the upper limbs caused by stroke,sports injury,or trafc accidents limits the ability to perform the activities of daily living.Besides the necessary medical treatment,correct and scientifc rehabilitation...Dyskinesia of the upper limbs caused by stroke,sports injury,or trafc accidents limits the ability to perform the activities of daily living.Besides the necessary medical treatment,correct and scientifc rehabilitation training for the injured joint is an important auxiliary means during the treatment of the efected upper limb.Conventional upperlimb rehabilitation robots have some disadvantages,such as a complex structure,poor compliance,high cost,and poor portability.In this study,a novel soft wearable upper limb rehabilitation robot(SWULRR)with reinforced soft pneumatic actuators(RSPAs)that can withstand high pressure and featuring excellent loading characteristics was developed.Driven by RSPAs,this portable SWULRR can perform rehabilitation training of the wrist and elbow joints.In this study,the kinematics of an SWULRR were analyzed,and the force and motion characteristics of RSPA were studied experimentally.The results provide a reference for the development and application of wearable upper limb rehabilitation robots.An experimental study on the rotation angle of the wrist and the pressure of the RSPA was conducted to test the efect of the rehabilitation training and verify the rationality of the theoretical model.The process of wrist rehabilitation training was tested and evaluated,indicating that SWULRR with RSPAs will enhance the fexibility,comfort,and safety of rehabilitation training.This work is expected to promote the development of wearable upper-limb rehabilitation robots based on modular reinforced soft pneumatic actuators.展开更多
In order to improve the rehabilitative effect of users' recovery training and reduce the production cost of rehabilitation institution, this paper designs an aid walking mechanism for a lower limb rehabilitation robo...In order to improve the rehabilitative effect of users' recovery training and reduce the production cost of rehabilitation institution, this paper designs an aid walking mechanism for a lower limb rehabilitation robot which achieves the movement of transmission by use of the interrelationship between hip and knee. Using single chip micyoco (SCM) control technology to achieve the coordinated operation of the entire mechanical institution, this aid walking mechanism simulates the walking gait. Besides, this paper also verifies that materials' strength meet the design requirements by Solidworks simulation stress-strain analysis module.展开更多
With the increase in the number of stroke patients,there is a growing demand for rehabilitation training.Robot-assisted training is expected to play a crucial role in meeting this demand.To ensure the safety and comfo...With the increase in the number of stroke patients,there is a growing demand for rehabilitation training.Robot-assisted training is expected to play a crucial role in meeting this demand.To ensure the safety and comfort of patients during rehabilitation training,it is important to have a patient-cooperative compliant control system for rehabilitation robots.In order to enhance the motion compliance of patients during rehabilitation training,a hierarchical adaptive patient-cooperative compliant control strategy that includes patient-passive exercise and patient-cooperative exercise is proposed.A low-level adaptive backstepping position controller is selected to ensure accurate tracking of the desired trajectory.At the high-level,an adaptive admittance controller is employed to plan the desired trajectory based on the interaction force between the patient and the robot.The results of the patient-robot cooperation experiment on a rehabilitation robot show a significant improvement in tracking trajectory,with a decrease of 76.45%in the dimensionless squared jerk(DSJ)and a decrease of 15.38%in the normalized root mean square deviation(NRMSD)when using the adaptive admittance controller.The proposed adaptive patient-cooperative control strategy effectively enhances the compliance of robot movements,thereby ensuring the safety and comfort of patients during rehabilitation training.展开更多
To ensure the safety, comfort, and effectiveness of lower limb rehabilitation exoskeleton robots in the rehabilitation training process, compliance is a prerequisite for human–machine interaction safety. First, under...To ensure the safety, comfort, and effectiveness of lower limb rehabilitation exoskeleton robots in the rehabilitation training process, compliance is a prerequisite for human–machine interaction safety. First, under the premise of considering the mechanical structure of the lower limb rehabilitation exoskeleton robot (LLRER), when conducting the dynamic transmission of the exoskeleton knee joint, the soft axis is added to ensure that the rotation motion and torque are flexibly transmitted to any position to achieve flexible force transmission. Second, to realize the active compliance control of LLRER, the sliding mode impedance closed-loop controller is developed based on the kinematics and dynamics model of LLRER, and the stability of the designed control system is verified by Lyapunov method. Then the experiment is designed to track the collected bicycle rehabilitation motion data stably, and the algorithm and dynamic model are verified to satisfy the experimental requirements. Finally, aiming at the transmission efficiency and response performance of the soft shaft in the torque transmission process of the knee joint, the soft shaft transmission performance test is carried out to test the soft shaft transmission performance and realize the compliance of the LLRER, so as to ensure that the rehabilitation training can be carried out in a safe and comfortable interactive environment. Through the design of rehabilitation exercise training, it is verified that the LLRER of flexible transmission under sliding mode impedance control has good adaptability in the actual environment, and can achieve accurate and flexible control. During the experiment, the effectiveness of monitoring rehabilitation training is brought through the respiratory belt.展开更多
As an innovative concept,an optimal predictive impedance controlle is introduced here to control a lower limb rehabilitation robo in the presence of uncertainty.The desired impedance law is considered to propose a con...As an innovative concept,an optimal predictive impedance controlle is introduced here to control a lower limb rehabilitation robo in the presence of uncertainty.The desired impedance law is considered to propose a conventional model-based impedance controller for the LLRR.However,external disturbances,model imperfection,and parameters uncertainties reduce the performance of the controller in practice.In order to cope with these uncertainties,an optimal predictive compensator is introduced as a solution for a proposed convex optimization problem,which is performed on a forward finite-length horizon.As a result,the LLRR has the desired behavior even in an uncertain environment.The performance and efficiency of the proposed controller are verified by the simulation results.展开更多
This paper addresses the design of a novel bionic robotic device for upper limb rehabilitation tasks at home.The main goal of the design process has been to obtain a rehabilitation device,which can be easily portable ...This paper addresses the design of a novel bionic robotic device for upper limb rehabilitation tasks at home.The main goal of the design process has been to obtain a rehabilitation device,which can be easily portable and can be managed remotely by a professional therapist.This allows to treat people also in regions that are not easily reachable with a significant cost reduction.Other potential benefits can be envisaged,for instance,in the possibility to keep social distancing while allowing rehabilitation treatments even during a pandemic spread.Specific attention has been devoted to design the main mechatronic components by developing specific kinematics and dynamics models.The design process includes the implementation of a specific control hardware and software.Preliminary experimental tests are reported to show the effectiveness and feasibility of the proposed design solution.展开更多
This article introduces a cable-driven lower limb rehabilitation robot with movable distal anchor points(M-CDLR).The traditional cable-driven parallel robots(CDPRs)control the moving platform by changing the length of...This article introduces a cable-driven lower limb rehabilitation robot with movable distal anchor points(M-CDLR).The traditional cable-driven parallel robots(CDPRs)control the moving platform by changing the length of cables,M-CDLR can also adjust the position of the distal anchor point when the moving platform moves.The M-CDLR this article proposed has gait and single-leg training modes,which correspond to the plane and space motion of the moving platform,respectively.After introducing the system structure configuration,the generalized kinematics and dynamics of M-CDLR are established.The fully constrained CDPRs can provide more stable rehabilitation training than the under-constrained one but requires more cables.Therefore,a motion planning method for the movable distal anchor point of M-CDLR is proposed to realize the theoretically fully constrained with fewer cables.Then the expected trajectory of the moving platform is obtained from the motion capture experiment,and the motion planning of M-CDLR under two training modes is simulated.The simulation results verify the effectiveness of the proposed motion planning method.This study serves as a basic theoretical study of the structure optimization and control strategy of M-CDLR.展开更多
The authors investigate the trajectory tracking control problem of an upper limb reha-bilitation robot system with unknown dynamics.To address the system's uncertainties and improve the tracking accuracy of the re...The authors investigate the trajectory tracking control problem of an upper limb reha-bilitation robot system with unknown dynamics.To address the system's uncertainties and improve the tracking accuracy of the rehabilitation robot,an adaptive neural full-state feedback control is proposed.The neural network is utilised to approximate the dy-namics that are not fully modelled and adapt to the interaction between the upper limb rehabilitation robot and the patient.By incorporating a high-gain observer,unmeasurable state information is integrated into the output feedback control.Taking into consider-ation the issue of joint position constraints during the actual rehabilitation training process,an adaptive neural full-state and output feedback control scheme with output constraint is further designed.From the perspective of safety in human–robot interaction during rehabilitation training,log-type barrier Lyapunov function is introduced in the output constraint controller to ensure that the output remains within the predefined constraint region.The stability of the closed-loop system is proved by Lyapunov stability theory.The effectiveness of the proposed control scheme is validated by applying it to an upper limb rehabilitation robot through simulations.展开更多
To achieve human lower limbs rehabilitation training, the exoskeleton lower limbs rehabilitation robot is designed. Through respective motor driving, the retarding mechanism and telescopic adjusting mechanism, the fun...To achieve human lower limbs rehabilitation training, the exoskeleton lower limbs rehabilitation robot is designed. Through respective motor driving, the retarding mechanism and telescopic adjusting mechanism, the function of human walking is accomplished. After the design of the mechanical structure, the finite element analysis is carried out on the important parts and the control system is achieved by Single Chip Microcomputer.展开更多
Objective:To investigate the efficacy and safety of low-frequency repetitive transcranial magnetic stimulation(rTMS)for the treatment of lower limb motor dysfunction after stroke.Methods:A total of 96 patients with st...Objective:To investigate the efficacy and safety of low-frequency repetitive transcranial magnetic stimulation(rTMS)for the treatment of lower limb motor dysfunction after stroke.Methods:A total of 96 patients with stroke and lower limb motor dysfunction were enrolled in this study,and were randomly divided into the experimental group and the sham stimulation group using the method of calculator-generated random numbers.Both groups received conventional medication and rehabilitation therapy.The experimental group received 4 weeks of 1 Hz rTMS treatment in the primary cortical motor area(M1)of the healthy side,with the treatment coil tangent to the skull surface;the sham stimulation group underwent the same procedures as the experimental group,but the treatment coil was perpendicular to the skull surface instead.Lower-extremity subscale of the Fugl-Meyer Assessment(FMA-LE),Berg Balance Scale(BBS),gait analysis,and lower-extremity surface electromyography(LESEM)were performed in both groups before and after rTMS treatment.Results:All 96 patients completed the test with no shedding and no adverse reactions.After treatment,the FMA-LE score and BBS score of the 2 groups of patients were significantly improved as compared with the pre-treatment(P<0.05),and the TUG test time was reduced as compared with the pre-treatment(P<0.05).The true stimulation group had greater improvement in all assessment indexes than that of the sham stimulation group(P<0.05).After treatment,the electromyographic activity of the tibialis anterior and rectus femoris muscles in the true simulation group improved significantly.The step length,step speed,and step frequency were also significantly improved in both groups after treatment,and the symmetrical ratio of step length and support time was reduced(P<0.05).Comparison between the groups revealed that the true simulation group significantly improved after rTMS treatment as compared to the sham stimulation group(P<0.05).Conclusion:1Hz rTMS treatment safely and effectively improved motor and balance function in patients with post-stroke lower limb motor dysfunction.展开更多
The mechanical structure as well as the schematic organization has been designed to achieve lower limb rehabilitation training function; Solidworks has been used to model the robot. And the robot has been optimized by...The mechanical structure as well as the schematic organization has been designed to achieve lower limb rehabilitation training function; Solidworks has been used to model the robot. And the robot has been optimized by the means of human-interference engineering. The primary components of the robot have been analyzed by Ansys workbench.展开更多
An assessment of the human motion repeatability for three selected Activities of Daily Living(ADL)is performed in this paper.These exercises were prescribed by an occupational therapist for the upper limb rehabilitati...An assessment of the human motion repeatability for three selected Activities of Daily Living(ADL)is performed in this paper.These exercises were prescribed by an occupational therapist for the upper limb rehabilitation.The movement patterns of five participants,recorded using a Qualisys motion capture system,are compared based on the Analysis of Variance(ANOVA)method.This survey is motivated by the need to find the appropriate task workspace of a 6-degrees of freedom cable-driven parallel robot for upper limb rehabilitation,which is able to reproduce the three selected exercises.This comparison is performed to justify,whether or not,there is enough similarity between the participants’gestures,and so a single reference trajectory can be adopted as the robot-prescribed workspace.Using the results of the comparative study,an optimization process of the sought robot design is carried out,where the structure size and the cable tensions simultaneously minimized.展开更多
In order to improve the safety protection performance of the rehabilitation robot,an active safety protection method is proposed in the rehabilitation scene.The oxyhemoglobin concentration information and RGB-D inform...In order to improve the safety protection performance of the rehabilitation robot,an active safety protection method is proposed in the rehabilitation scene.The oxyhemoglobin concentration information and RGB-D information are combined in this method,which aims to realize the comprehensive monitoring of the invasion target,the patient’s brain function movement state,and the joint angle in the rehabilitation scene.The main focus is to study the fusion method of the oxyhemoglobin concentration information and RGB-D information in the rehabilitation scene.Frequency analysis of brain functional connectivity coefficient was used to distinguish the basic motion states.The human skeleton recognition algorithm was used to realize the angle monitoring of the upper limb joint combined with the depth information.Compared with speed and separation monitoring,the protection method of multi-information fusion is safer and more comprehensive for stroke patients.By building the active safety protection platform of the upper limb rehabilitation robot,the performance of the system in different safety states is tested,and the safety protection performance of the method in the upper limb rehabilitation scene is verified.展开更多
Robot-assisted rehabilitation is a crucial approach to restoring motor function in the limb.However,the current training trajectory lacks sufficient theoretical or practical support,and the monotony of single-mode tra...Robot-assisted rehabilitation is a crucial approach to restoring motor function in the limb.However,the current training trajectory lacks sufficient theoretical or practical support,and the monotony of single-mode training is a concern.Tai Chi Pushing Hands,a beneficial and effective daily exercise,has been shown to improve balance function,psychological state,and motor function of the upper extremities in patients recovering from stroke.To address these issues,we propose a new active rehabilitation training that incorporates Tai Chi Pushing Hands movements and yin-yang balance principles.The training trajectory and direction are encoded by the velocity field and consist of two processes:yang(push)and yin(return).During yang,the limb actively pushes the robot to move,while during yin,the limb actively follows the robot’s movement.To provide necessary assistance,an admittance controller with self-adaptive parameters is designed.In addition,we introduce two indexes,the‘Intention Angle’(ϖ)and the time ratio(Γ),to evaluate motion perception performance.Our experiment was conducted on a 4-degree-of-freedom upper limb rehabilitation robot platform,and the subjects were separated into a familiar group and an unfamiliar group.The experiment results show that the training could be completed well no matter whether the subject is familiar with Tai Chi Pushing Hands or not.The parameters and the movement of the robot can be adjusted based on the interactive force to adapt to the ability of the subject.展开更多
According to clinical studies,upper limb robotic suits are vital to reduce therapist fatigue and accelerate patient rehabilitation.Soft pneumatic actuators have drawn increasing attention for the development of wearab...According to clinical studies,upper limb robotic suits are vital to reduce therapist fatigue and accelerate patient rehabilitation.Soft pneumatic actuators have drawn increasing attention for the development of wearable robots due to their low weight,flexibility,and high power-to-weight ratio.However,most of current actuators were designed for the flexion assistance of a specific joint,and that for joint extension requires further investigation.Furthermore,designing an actuator for diverse working scenarios remains a challenge.In this paper,we propose an all-fabric bi-directional actuator to assist the flexion and extension of the elbow,wrist,and fingers.A mathematical model is presented that predicts the deformation and guides the design of the proposed bi-directional actuator.To further validate the applicability and adaptability of the proposed actuator for different joints,we developed a 3-DOF soft robotic suit.Preliminary results show that the robotic suit can assist the motion of the elbow,wrist,and finger of the subject.展开更多
As a wearable and intelligent system, a lower limb exoskeleton rehabilitation robot can provide auxiliary rehabilitation training for patients with lower limb walking impairment/loss and address the existing problem o...As a wearable and intelligent system, a lower limb exoskeleton rehabilitation robot can provide auxiliary rehabilitation training for patients with lower limb walking impairment/loss and address the existing problem of insufficient medical resources. One of the main elements of such a human–robot coupling system is a control system to ensure human–robot coordination. This review aims to summarise the development of human–robot coordination control and the associated research achievements and provide insight into the research challenges in promoting innovative design in such control systems. The patients’ functional disorders and clinical rehabilitation needs regarding lower limbs are analysed in detail, forming the basis for the human–robot coordination of lower limb rehabilitation robots. Then, human–robot coordination is discussed in terms of three aspects: modelling, perception and control. Based on the reviewed research, the demand for robotic rehabilitation, modelling for human–robot coupling systems with new structures and assessment methods with different etiologies based on multi-mode sensors are discussed in detail, suggesting development directions of human–robot coordination and providing a reference for relevant research.展开更多
This study addresses two issues about the interaction of the upper limb rehabilitation robot with individuals who have disabilities.The first step is to estimate the human's target position(also known as TPH).The ...This study addresses two issues about the interaction of the upper limb rehabilitation robot with individuals who have disabilities.The first step is to estimate the human's target position(also known as TPH).The second step is to develop a robust adaptive impedance control mechanism.A novel Non-singular Terminal Sliding Mode Control combined with an adaptive super-twisting controller is being developed to achieve this goal.This combination's purpose is to provide high reliability,continuous performance tracking of the system's trajectories.The proposed adaptive control strategy reduces matched dynamic uncertainty while also lowering chattering,which is the sliding mode's most glaring issue.The proposed TPH is coupled with adaptive impedance control with the use of a Radial Basis Function Neural Network,which allows a robotic exoskeleton to simply track the desired impedance model.To validate the approach in real-time,an exoskeleton robot was deployed in controlled experimental circumstances.A comparison study has been set up to show how the adaptive impedance approach proposed is better than other traditional controllers.展开更多
文摘Objective: To explore the effect of lower limb rehabilitation robot combined with task-oriented training on stroke patients and its influence on KFAROM score. Methods: 100 stroke patients with hemiplegia admitted to our hospital from January 2023 to December 2023 were randomly divided into two groups, the control group (50 cases) was given task-oriented training assisted by nurses, and the observation group (50 cases) was given lower limb rehabilitation robot with task-oriented training. Lower limb balance, lower limb muscle strength, motor function, ankle function, knee flexion range of motion and walking ability were observed. Results: After treatment, the scores of BBS, quadriceps femoris and hamstrings in the observation group were significantly higher than those in the control group (P Conclusion: In the clinical treatment of stroke patients, the combination of task-oriented training and lower limb rehabilitation robot can effectively improve the lower limb muscle strength, facilitate the recovery of balance function, and have a significant effect on the recovery of motor function, which can improve the walking ability of stroke patients and the range of motion of knee flexion, and achieve more ideal therapeutic effectiveness.
文摘Objective:To analyze the effect of limb rehabilitation therapy combined with transcranial magnetic stimulation therapy on muscle activity in patients with upper limb dysfunction after cerebral infarction(CI).Methods:320 patients with upper limb dysfunction after CI were selected,all of whom were treated in our hospital between June 2021 and June 2023.They were randomly grouped according to the lottery method into the control group(limb rehabilitation therapy,160 cases)and the intervention group(transcranial magnetic stimulation therapy+limb rehabilitation therapy,160 cases).The upper limb function scores,neuro-electrophysiological indicators,daily living ability scores,and quality of life scores of the two groups were compared.Results:Compared with the control group,upper limb function scores and daily living ability scores in the intervention group were higher after treatment,and the neuro-electrophysiological indicators of the intervention group were lower after treatment(P<0.05).Conclusion:Transcranial magnetic stimulation therapy combined with limb rehabilitation therapy has significant effects in patients with upper limb dysfunction after CI and is worthy of promotion and application.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975505 and U2037202)Science and Technology Project of Hebei Education Department(Grant No.SLRC2019039)+1 种基金Postgraduate Innovation Ability Cultivation Funded Project of Hebei Province(Grant No.CXZZBS2021135)Open Project of Hebei Industrial Manipulator Control and reliability Technology Innovation Center,Hebei University of Water Resources and Electric Engineering(Grant No.JXKF2102).
文摘Dyskinesia of the upper limbs caused by stroke,sports injury,or trafc accidents limits the ability to perform the activities of daily living.Besides the necessary medical treatment,correct and scientifc rehabilitation training for the injured joint is an important auxiliary means during the treatment of the efected upper limb.Conventional upperlimb rehabilitation robots have some disadvantages,such as a complex structure,poor compliance,high cost,and poor portability.In this study,a novel soft wearable upper limb rehabilitation robot(SWULRR)with reinforced soft pneumatic actuators(RSPAs)that can withstand high pressure and featuring excellent loading characteristics was developed.Driven by RSPAs,this portable SWULRR can perform rehabilitation training of the wrist and elbow joints.In this study,the kinematics of an SWULRR were analyzed,and the force and motion characteristics of RSPA were studied experimentally.The results provide a reference for the development and application of wearable upper limb rehabilitation robots.An experimental study on the rotation angle of the wrist and the pressure of the RSPA was conducted to test the efect of the rehabilitation training and verify the rationality of the theoretical model.The process of wrist rehabilitation training was tested and evaluated,indicating that SWULRR with RSPAs will enhance the fexibility,comfort,and safety of rehabilitation training.This work is expected to promote the development of wearable upper-limb rehabilitation robots based on modular reinforced soft pneumatic actuators.
基金Supported by Science and Technology Department of Anhui Province Regional Innovation Projects and Qiushi Plan(JZ2015QSJH0245)
文摘In order to improve the rehabilitative effect of users' recovery training and reduce the production cost of rehabilitation institution, this paper designs an aid walking mechanism for a lower limb rehabilitation robot which achieves the movement of transmission by use of the interrelationship between hip and knee. Using single chip micyoco (SCM) control technology to achieve the coordinated operation of the entire mechanical institution, this aid walking mechanism simulates the walking gait. Besides, this paper also verifies that materials' strength meet the design requirements by Solidworks simulation stress-strain analysis module.
基金approved by the Biomedical Ethics Committee of Hebei University of Technology(NO.HEBUThMEC2022005).
文摘With the increase in the number of stroke patients,there is a growing demand for rehabilitation training.Robot-assisted training is expected to play a crucial role in meeting this demand.To ensure the safety and comfort of patients during rehabilitation training,it is important to have a patient-cooperative compliant control system for rehabilitation robots.In order to enhance the motion compliance of patients during rehabilitation training,a hierarchical adaptive patient-cooperative compliant control strategy that includes patient-passive exercise and patient-cooperative exercise is proposed.A low-level adaptive backstepping position controller is selected to ensure accurate tracking of the desired trajectory.At the high-level,an adaptive admittance controller is employed to plan the desired trajectory based on the interaction force between the patient and the robot.The results of the patient-robot cooperation experiment on a rehabilitation robot show a significant improvement in tracking trajectory,with a decrease of 76.45%in the dimensionless squared jerk(DSJ)and a decrease of 15.38%in the normalized root mean square deviation(NRMSD)when using the adaptive admittance controller.The proposed adaptive patient-cooperative control strategy effectively enhances the compliance of robot movements,thereby ensuring the safety and comfort of patients during rehabilitation training.
基金supported in part by the National Natural Science Foundation of China under grants 61873304 and 62173048in part by the China Postdoctoral Science Foundation Funded Project under grant 2018M641784also in part by the Key Science and Technology Project of Jilin Province,China,grant nos.20200404208YY.
文摘To ensure the safety, comfort, and effectiveness of lower limb rehabilitation exoskeleton robots in the rehabilitation training process, compliance is a prerequisite for human–machine interaction safety. First, under the premise of considering the mechanical structure of the lower limb rehabilitation exoskeleton robot (LLRER), when conducting the dynamic transmission of the exoskeleton knee joint, the soft axis is added to ensure that the rotation motion and torque are flexibly transmitted to any position to achieve flexible force transmission. Second, to realize the active compliance control of LLRER, the sliding mode impedance closed-loop controller is developed based on the kinematics and dynamics model of LLRER, and the stability of the designed control system is verified by Lyapunov method. Then the experiment is designed to track the collected bicycle rehabilitation motion data stably, and the algorithm and dynamic model are verified to satisfy the experimental requirements. Finally, aiming at the transmission efficiency and response performance of the soft shaft in the torque transmission process of the knee joint, the soft shaft transmission performance test is carried out to test the soft shaft transmission performance and realize the compliance of the LLRER, so as to ensure that the rehabilitation training can be carried out in a safe and comfortable interactive environment. Through the design of rehabilitation exercise training, it is verified that the LLRER of flexible transmission under sliding mode impedance control has good adaptability in the actual environment, and can achieve accurate and flexible control. During the experiment, the effectiveness of monitoring rehabilitation training is brought through the respiratory belt.
文摘As an innovative concept,an optimal predictive impedance controlle is introduced here to control a lower limb rehabilitation robo in the presence of uncertainty.The desired impedance law is considered to propose a conventional model-based impedance controller for the LLRR.However,external disturbances,model imperfection,and parameters uncertainties reduce the performance of the controller in practice.In order to cope with these uncertainties,an optimal predictive compensator is introduced as a solution for a proposed convex optimization problem,which is performed on a forward finite-length horizon.As a result,the LLRR has the desired behavior even in an uncertain environment.The performance and efficiency of the proposed controller are verified by the simulation results.
文摘This paper addresses the design of a novel bionic robotic device for upper limb rehabilitation tasks at home.The main goal of the design process has been to obtain a rehabilitation device,which can be easily portable and can be managed remotely by a professional therapist.This allows to treat people also in regions that are not easily reachable with a significant cost reduction.Other potential benefits can be envisaged,for instance,in the possibility to keep social distancing while allowing rehabilitation treatments even during a pandemic spread.Specific attention has been devoted to design the main mechatronic components by developing specific kinematics and dynamics models.The design process includes the implementation of a specific control hardware and software.Preliminary experimental tests are reported to show the effectiveness and feasibility of the proposed design solution.
基金funded by the National Natural Science Foundation of China,Grant Number:52175006.
文摘This article introduces a cable-driven lower limb rehabilitation robot with movable distal anchor points(M-CDLR).The traditional cable-driven parallel robots(CDPRs)control the moving platform by changing the length of cables,M-CDLR can also adjust the position of the distal anchor point when the moving platform moves.The M-CDLR this article proposed has gait and single-leg training modes,which correspond to the plane and space motion of the moving platform,respectively.After introducing the system structure configuration,the generalized kinematics and dynamics of M-CDLR are established.The fully constrained CDPRs can provide more stable rehabilitation training than the under-constrained one but requires more cables.Therefore,a motion planning method for the movable distal anchor point of M-CDLR is proposed to realize the theoretically fully constrained with fewer cables.Then the expected trajectory of the moving platform is obtained from the motion capture experiment,and the motion planning of M-CDLR under two training modes is simulated.The simulation results verify the effectiveness of the proposed motion planning method.This study serves as a basic theoretical study of the structure optimization and control strategy of M-CDLR.
基金National Natural Science Foundation of China,Grant/Award Numbers:61563032,61963025Science and Technology Program of Gansu Province,Grant/Award Numbers:22CX8GA131,22YF7GA164。
文摘The authors investigate the trajectory tracking control problem of an upper limb reha-bilitation robot system with unknown dynamics.To address the system's uncertainties and improve the tracking accuracy of the rehabilitation robot,an adaptive neural full-state feedback control is proposed.The neural network is utilised to approximate the dy-namics that are not fully modelled and adapt to the interaction between the upper limb rehabilitation robot and the patient.By incorporating a high-gain observer,unmeasurable state information is integrated into the output feedback control.Taking into consider-ation the issue of joint position constraints during the actual rehabilitation training process,an adaptive neural full-state and output feedback control scheme with output constraint is further designed.From the perspective of safety in human–robot interaction during rehabilitation training,log-type barrier Lyapunov function is introduced in the output constraint controller to ensure that the output remains within the predefined constraint region.The stability of the closed-loop system is proved by Lyapunov stability theory.The effectiveness of the proposed control scheme is validated by applying it to an upper limb rehabilitation robot through simulations.
基金Supported by Science and Technology Department of Anhui Province Regional Innovation Projects and Qiushi Plan(JZ2015QSJH0245)
文摘To achieve human lower limbs rehabilitation training, the exoskeleton lower limbs rehabilitation robot is designed. Through respective motor driving, the retarding mechanism and telescopic adjusting mechanism, the function of human walking is accomplished. After the design of the mechanical structure, the finite element analysis is carried out on the important parts and the control system is achieved by Single Chip Microcomputer.
文摘Objective:To investigate the efficacy and safety of low-frequency repetitive transcranial magnetic stimulation(rTMS)for the treatment of lower limb motor dysfunction after stroke.Methods:A total of 96 patients with stroke and lower limb motor dysfunction were enrolled in this study,and were randomly divided into the experimental group and the sham stimulation group using the method of calculator-generated random numbers.Both groups received conventional medication and rehabilitation therapy.The experimental group received 4 weeks of 1 Hz rTMS treatment in the primary cortical motor area(M1)of the healthy side,with the treatment coil tangent to the skull surface;the sham stimulation group underwent the same procedures as the experimental group,but the treatment coil was perpendicular to the skull surface instead.Lower-extremity subscale of the Fugl-Meyer Assessment(FMA-LE),Berg Balance Scale(BBS),gait analysis,and lower-extremity surface electromyography(LESEM)were performed in both groups before and after rTMS treatment.Results:All 96 patients completed the test with no shedding and no adverse reactions.After treatment,the FMA-LE score and BBS score of the 2 groups of patients were significantly improved as compared with the pre-treatment(P<0.05),and the TUG test time was reduced as compared with the pre-treatment(P<0.05).The true stimulation group had greater improvement in all assessment indexes than that of the sham stimulation group(P<0.05).After treatment,the electromyographic activity of the tibialis anterior and rectus femoris muscles in the true simulation group improved significantly.The step length,step speed,and step frequency were also significantly improved in both groups after treatment,and the symmetrical ratio of step length and support time was reduced(P<0.05).Comparison between the groups revealed that the true simulation group significantly improved after rTMS treatment as compared to the sham stimulation group(P<0.05).Conclusion:1Hz rTMS treatment safely and effectively improved motor and balance function in patients with post-stroke lower limb motor dysfunction.
基金Supported by Science and Technology Department of Anhui province Qiushi Plan(JZ2015QSJH0245)National College Students'Entrepreneurship Practice Project(201410359070)
文摘The mechanical structure as well as the schematic organization has been designed to achieve lower limb rehabilitation training function; Solidworks has been used to model the robot. And the robot has been optimized by the means of human-interference engineering. The primary components of the robot have been analyzed by Ansys workbench.
基金supported by the"PHC Utiquc"program of the French Ministry of Foreign Affairs and Ministry of Higher Education,Research and Innovation and the Tunisian Ministry of Higher Education and Scientific Research.P.n°19G1121the support of the Erasmus+KA 107 program.
文摘An assessment of the human motion repeatability for three selected Activities of Daily Living(ADL)is performed in this paper.These exercises were prescribed by an occupational therapist for the upper limb rehabilitation.The movement patterns of five participants,recorded using a Qualisys motion capture system,are compared based on the Analysis of Variance(ANOVA)method.This survey is motivated by the need to find the appropriate task workspace of a 6-degrees of freedom cable-driven parallel robot for upper limb rehabilitation,which is able to reproduce the three selected exercises.This comparison is performed to justify,whether or not,there is enough similarity between the participants’gestures,and so a single reference trajectory can be adopted as the robot-prescribed workspace.Using the results of the comparative study,an optimization process of the sought robot design is carried out,where the structure size and the cable tensions simultaneously minimized.
基金the Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2019QNA25)。
文摘In order to improve the safety protection performance of the rehabilitation robot,an active safety protection method is proposed in the rehabilitation scene.The oxyhemoglobin concentration information and RGB-D information are combined in this method,which aims to realize the comprehensive monitoring of the invasion target,the patient’s brain function movement state,and the joint angle in the rehabilitation scene.The main focus is to study the fusion method of the oxyhemoglobin concentration information and RGB-D information in the rehabilitation scene.Frequency analysis of brain functional connectivity coefficient was used to distinguish the basic motion states.The human skeleton recognition algorithm was used to realize the angle monitoring of the upper limb joint combined with the depth information.Compared with speed and separation monitoring,the protection method of multi-information fusion is safer and more comprehensive for stroke patients.By building the active safety protection platform of the upper limb rehabilitation robot,the performance of the system in different safety states is tested,and the safety protection performance of the method in the upper limb rehabilitation scene is verified.
基金supported by the Foundation of Henan Provincial Science and Technology Research Project in China(212102310890 and 212102310249).
文摘Robot-assisted rehabilitation is a crucial approach to restoring motor function in the limb.However,the current training trajectory lacks sufficient theoretical or practical support,and the monotony of single-mode training is a concern.Tai Chi Pushing Hands,a beneficial and effective daily exercise,has been shown to improve balance function,psychological state,and motor function of the upper extremities in patients recovering from stroke.To address these issues,we propose a new active rehabilitation training that incorporates Tai Chi Pushing Hands movements and yin-yang balance principles.The training trajectory and direction are encoded by the velocity field and consist of two processes:yang(push)and yin(return).During yang,the limb actively pushes the robot to move,while during yin,the limb actively follows the robot’s movement.To provide necessary assistance,an admittance controller with self-adaptive parameters is designed.In addition,we introduce two indexes,the‘Intention Angle’(ϖ)and the time ratio(Γ),to evaluate motion perception performance.Our experiment was conducted on a 4-degree-of-freedom upper limb rehabilitation robot platform,and the subjects were separated into a familiar group and an unfamiliar group.The experiment results show that the training could be completed well no matter whether the subject is familiar with Tai Chi Pushing Hands or not.The parameters and the movement of the robot can be adjusted based on the interactive force to adapt to the ability of the subject.
基金The research is supported by the National Natural Science Foundation of China(52275002)the Open Laboratory Concept Verification Project of Zhongguancun National Demonstration Zone(Grant No.202005226).
文摘According to clinical studies,upper limb robotic suits are vital to reduce therapist fatigue and accelerate patient rehabilitation.Soft pneumatic actuators have drawn increasing attention for the development of wearable robots due to their low weight,flexibility,and high power-to-weight ratio.However,most of current actuators were designed for the flexion assistance of a specific joint,and that for joint extension requires further investigation.Furthermore,designing an actuator for diverse working scenarios remains a challenge.In this paper,we propose an all-fabric bi-directional actuator to assist the flexion and extension of the elbow,wrist,and fingers.A mathematical model is presented that predicts the deformation and guides the design of the proposed bi-directional actuator.To further validate the applicability and adaptability of the proposed actuator for different joints,we developed a 3-DOF soft robotic suit.Preliminary results show that the robotic suit can assist the motion of the elbow,wrist,and finger of the subject.
基金the National Natural Science Foundation of China(Grant Nos.91848104,91748201,and 52105004)。
文摘As a wearable and intelligent system, a lower limb exoskeleton rehabilitation robot can provide auxiliary rehabilitation training for patients with lower limb walking impairment/loss and address the existing problem of insufficient medical resources. One of the main elements of such a human–robot coupling system is a control system to ensure human–robot coordination. This review aims to summarise the development of human–robot coordination control and the associated research achievements and provide insight into the research challenges in promoting innovative design in such control systems. The patients’ functional disorders and clinical rehabilitation needs regarding lower limbs are analysed in detail, forming the basis for the human–robot coordination of lower limb rehabilitation robots. Then, human–robot coordination is discussed in terms of three aspects: modelling, perception and control. Based on the reviewed research, the demand for robotic rehabilitation, modelling for human–robot coupling systems with new structures and assessment methods with different etiologies based on multi-mode sensors are discussed in detail, suggesting development directions of human–robot coordination and providing a reference for relevant research.
文摘This study addresses two issues about the interaction of the upper limb rehabilitation robot with individuals who have disabilities.The first step is to estimate the human's target position(also known as TPH).The second step is to develop a robust adaptive impedance control mechanism.A novel Non-singular Terminal Sliding Mode Control combined with an adaptive super-twisting controller is being developed to achieve this goal.This combination's purpose is to provide high reliability,continuous performance tracking of the system's trajectories.The proposed adaptive control strategy reduces matched dynamic uncertainty while also lowering chattering,which is the sliding mode's most glaring issue.The proposed TPH is coupled with adaptive impedance control with the use of a Radial Basis Function Neural Network,which allows a robotic exoskeleton to simply track the desired impedance model.To validate the approach in real-time,an exoskeleton robot was deployed in controlled experimental circumstances.A comparison study has been set up to show how the adaptive impedance approach proposed is better than other traditional controllers.