The removal of Cd, Cu, Ni and Zn from dilute mine water by using several geological materials including pure limestone, sand, carbonaceous limestone and brecciated limestone was performed on a laboratory scale. The re...The removal of Cd, Cu, Ni and Zn from dilute mine water by using several geological materials including pure limestone, sand, carbonaceous limestone and brecciated limestone was performed on a laboratory scale. The results showed that to add geological materials in combination with sodium carbonate injection would notably enhance the efficiency of heavy metal removal to varying degrees. Pure limestone was found the best one among the four materials mentioned above for removing heavy metals from mine water. The removal efficiencies of pure limestone when it is ground as fine as 30–60 meshes are 58.6% for Cd, 100% for Cu, 47.8% for Ni, and 36.8% for Zn at 20℃. The optimum pH is about 8.9 to 9.1. The mechanism of higher effective removal, perhaps, is primarily due to co-precipitation under the control of calcite-related pH value. According to this research, Na2CO3 injection manners, including slug dosing and drip-wise, seemed to have little impact on the efficiency of heavy metal removal.展开更多
A geoelectrical survey using the electrical resistivity method was carried out in the Mayo Boki (Northern Cameroon), to investigate the subsurface layering and evaluation of the limestone characteristics. In addition ...A geoelectrical survey using the electrical resistivity method was carried out in the Mayo Boki (Northern Cameroon), to investigate the subsurface layering and evaluation of the limestone characteristics. In addition to geological data collection, three vertical electrical soundings and one electrical resistivity profile were measured. Joint interpretation of the DC data allows us to obtain reliable 1D models of the resistivity distribution. The interpretation of the field data was carried out using the RES2DINV software, which converts the apparent resistivity as a function of electrode spacing to the true resistivity as a function of depth in two dimensions. The results obtained from the electrical resistivity survey showed that: 1) A limestone layer was put in evidence at a depth of 4 m and the thickness varies from 13 m to 44 m;2) The limestone layer resistivity is ranged from 125 to 2410 ohm.m;3) An area of probable limestone deposit with interesting thicknesses have been identified. These facts are useful for future mining exploration as drilling map definition and operations. The geologic section of a nearby location termed resistivity profile was delineated and its total depth was found to be 57 m, which corroborates the lithologs of the boreholes from the area. The correlation of geological data and the geoelectric section has led to envisage pursuing exploration activities. Based on the limestone layer characteristics extracted from this DC investigation, the exploration drilling operations have to be initiated in order to define the limestone resource over the area of study, which will certainly enables to built the exploitation project prefeasibility document.展开更多
基金granted by the Science Foundation of China Postdoctors (No. 20070420214)the Natural Science Foundation of Shaanxi Province (No. SJ08D03)
文摘The removal of Cd, Cu, Ni and Zn from dilute mine water by using several geological materials including pure limestone, sand, carbonaceous limestone and brecciated limestone was performed on a laboratory scale. The results showed that to add geological materials in combination with sodium carbonate injection would notably enhance the efficiency of heavy metal removal to varying degrees. Pure limestone was found the best one among the four materials mentioned above for removing heavy metals from mine water. The removal efficiencies of pure limestone when it is ground as fine as 30–60 meshes are 58.6% for Cd, 100% for Cu, 47.8% for Ni, and 36.8% for Zn at 20℃. The optimum pH is about 8.9 to 9.1. The mechanism of higher effective removal, perhaps, is primarily due to co-precipitation under the control of calcite-related pH value. According to this research, Na2CO3 injection manners, including slug dosing and drip-wise, seemed to have little impact on the efficiency of heavy metal removal.
文摘A geoelectrical survey using the electrical resistivity method was carried out in the Mayo Boki (Northern Cameroon), to investigate the subsurface layering and evaluation of the limestone characteristics. In addition to geological data collection, three vertical electrical soundings and one electrical resistivity profile were measured. Joint interpretation of the DC data allows us to obtain reliable 1D models of the resistivity distribution. The interpretation of the field data was carried out using the RES2DINV software, which converts the apparent resistivity as a function of electrode spacing to the true resistivity as a function of depth in two dimensions. The results obtained from the electrical resistivity survey showed that: 1) A limestone layer was put in evidence at a depth of 4 m and the thickness varies from 13 m to 44 m;2) The limestone layer resistivity is ranged from 125 to 2410 ohm.m;3) An area of probable limestone deposit with interesting thicknesses have been identified. These facts are useful for future mining exploration as drilling map definition and operations. The geologic section of a nearby location termed resistivity profile was delineated and its total depth was found to be 57 m, which corroborates the lithologs of the boreholes from the area. The correlation of geological data and the geoelectric section has led to envisage pursuing exploration activities. Based on the limestone layer characteristics extracted from this DC investigation, the exploration drilling operations have to be initiated in order to define the limestone resource over the area of study, which will certainly enables to built the exploitation project prefeasibility document.