This paper elaborates the wet limestone gypsum technology adopted in the flue gasdesulfurization projects of 4×360 MW generating units in Luohuang Power Plant, theimplementation process of Phase II desulfurizatio...This paper elaborates the wet limestone gypsum technology adopted in the flue gasdesulfurization projects of 4×360 MW generating units in Luohuang Power Plant, theimplementation process of Phase II desulfurization project, the technical features and differencesof Phase I and II desulfurization plants, and puts forward some suggestions for FGD projectconstruction.[展开更多
Performance of simultaneous desulfurization and denitration using the solution of NaClO2 and NaClO as new-style complex absorbent was investigated experimentally in self-designed bench scale bubbling reactor. The effe...Performance of simultaneous desulfurization and denitration using the solution of NaClO2 and NaClO as new-style complex absorbent was investigated experimentally in self-designed bench scale bubbling reactor. The effects of main parameters, such as the concentrations of NaClO2 and of NaClO, solution pH and reaction temperature and so on, on removal efficiencies of SO2 and NOx, were examined, then the optimal conditions were established, in which the molar ratio of NaClO to NaClO2 was 1:1, the reaction temperature was 50℃ and the solution pH was 5.5. The removal efficiencies of SO2 and NO under the optimal conditions were 100% and 89.2%, respectively. The mechanism of simultaneous removal based on complex absorbent was proposed by analyzing the removal products and the electrode potentials of related species, namely SO2 and NO are oxi- dized by chlorite anion, hypochlorite, chlorine dioxide and chlorine contained in complex absorbent. In thermodynamic aspect, simultaneous desulfurization and denitration reactions in liquid phase can happen spontaneously and completely, and are all exothermic reactions. It was confirmed by kinetics that for simultaneous desulfurization and denitration, the reaction order and average activation energy of SO2 were 1 and 21.6 kJ·mol^-1, respectively, and those of NO were 1 and 8.2 kJ·mol^-1, respectively.展开更多
文摘This paper elaborates the wet limestone gypsum technology adopted in the flue gasdesulfurization projects of 4×360 MW generating units in Luohuang Power Plant, theimplementation process of Phase II desulfurization project, the technical features and differencesof Phase I and II desulfurization plants, and puts forward some suggestions for FGD projectconstruction.[
文摘Performance of simultaneous desulfurization and denitration using the solution of NaClO2 and NaClO as new-style complex absorbent was investigated experimentally in self-designed bench scale bubbling reactor. The effects of main parameters, such as the concentrations of NaClO2 and of NaClO, solution pH and reaction temperature and so on, on removal efficiencies of SO2 and NOx, were examined, then the optimal conditions were established, in which the molar ratio of NaClO to NaClO2 was 1:1, the reaction temperature was 50℃ and the solution pH was 5.5. The removal efficiencies of SO2 and NO under the optimal conditions were 100% and 89.2%, respectively. The mechanism of simultaneous removal based on complex absorbent was proposed by analyzing the removal products and the electrode potentials of related species, namely SO2 and NO are oxi- dized by chlorite anion, hypochlorite, chlorine dioxide and chlorine contained in complex absorbent. In thermodynamic aspect, simultaneous desulfurization and denitration reactions in liquid phase can happen spontaneously and completely, and are all exothermic reactions. It was confirmed by kinetics that for simultaneous desulfurization and denitration, the reaction order and average activation energy of SO2 were 1 and 21.6 kJ·mol^-1, respectively, and those of NO were 1 and 8.2 kJ·mol^-1, respectively.