The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an...The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an analylical upper-bound solution todrawing stress through idling rolls has been obtained in this paper.展开更多
针对现有850 k W风力机叶片,分析其材料、结构及铺层状态,对比传统叶片有限元模型,将描述叶片主要结构的弦长、扭角采用分段函数形式表达,采用MATLAB编程并结合ANSYS二次开发建立风力机叶片参数化几何模型.基于动量-叶素理论的BLADED软...针对现有850 k W风力机叶片,分析其材料、结构及铺层状态,对比传统叶片有限元模型,将描述叶片主要结构的弦长、扭角采用分段函数形式表达,采用MATLAB编程并结合ANSYS二次开发建立风力机叶片参数化几何模型.基于动量-叶素理论的BLADED软件计算叶片各截面处的极限载荷,并于叶片分段施加载荷增量.动力学分析得到叶片前三阶挥舞和摆振频率及一阶扭转频率,其与实测固有频率比较,分析并验证叶片于共振区外运行.静力分析得到叶片挥舞位移及关键部位应力分布,通过最大应力准则和蔡-胡(Tsai-Wu)准则对翼面进行强度校核(其他部位同理校核),表明叶片在极限状态下仍能保持安全运行.该研究描绘了叶片主要力学性能,为叶片进一步优化奠定了基础.展开更多
The characteristic of coal spontaneous combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large scale experimental unit loading...The characteristic of coal spontaneous combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large scale experimental unit loading coal 1 000 kg. According to the field change of gas concentration and coal temperature determined through experiment of coal self ignite at low temperature stage, and on the basis of hydromechanics and heat transfer theory, some parameters can be calculated at different low temperature stage, such as, oxygen consumption rate, heat liberation intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self ignite and forecasting coal spontaneous combustion. According to coal exothermic capability and its thermal storage surroundings, thermal equilibrium is applied to deduce the computational method of limit parameter of coal self ignite. It offers a quantitative theoretic criterion for coal self ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal spontaneous combustion is quantitatively analyzed, such as, spontaneous combustion period of coal, critical temperature, oxygen consumption rate, heat liberation intensity, and limit parameter of coal self ignite.展开更多
Current installation costs of offshore wind turbines(OWTs) are high and profit margins in the offshore wind energy sector are low, it is thus necessary to develop installation methods that are more efficient and pract...Current installation costs of offshore wind turbines(OWTs) are high and profit margins in the offshore wind energy sector are low, it is thus necessary to develop installation methods that are more efficient and practical. This paper presents a numerical study(based on a global response analysis of marine operations) of a novel procedure for installing the tower and Rotor Nacelle Assemblies(RNAs) on bottom-fixed foundations of OWTs. The installation procedure is based on the inverted pendulum principle. A cargo barge is used to transport the OWT assembly in a horizontal position to the site, and a medium-size Heavy Lift Vessel(HLV) is then employed to lift and up-end the OWT assembly using a special upending frame. The main advantage of this novel procedure is that the need for a huge HLV(in terms of lifting height and capacity) is eliminated. This novel method requires that the cargo barge is in the leeward side of the HLV(which can be positioned with the best heading) during the entire installation. This is to benefit from shielding effects of the HLV on the motions of the cargo barge, so the foundations need to be installed with a specific heading based on wave direction statistics of the site and a typical installation season. Following a systematic approach based on numerical simulations of actual operations, potential critical installation activities, corresponding critical events, and limiting(response) parameters are identified. In addition, operational limits for some of the limiting parameters are established in terms of allowable limits of sea states. Following a preliminary assessment of these operational limits, the duration of the entire operation, the equipment used, and weather-and water depth-sensitivity, this novel procedure is demonstrated to be viable.展开更多
Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusin...Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusing with regard to granular soils, because it is not associated with an obvious phenomenology. In this study, we built a proper framework, using the second-order work theory, to describe some failure modes in geomaterials based on energy conservation. The occurrence of failure is defined by an abrupt increase in kinetic energy. The increase in kinetic energy from an equilibrium state, under incremental loading, is shown to be equal to the difference between the external second-order work,involving the external loading parameters, and the internal second-order work, involving the constitutive properties of the material. When a stress limit state is reached, a certain stress component passes through a maximum value and then may decrease. Under such a condition, if a certain additional external loading is applied, the system fails, sharply increasing the strain rate. The internal stress is no longer able to balance the external stress, leading to a dynamic response of the specimen. As an illustration, the theoretical framework was applied to the well-known undrained triaxial test for loose soils. The influence of the loading control mode was clearly highlighted. It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory. When the plastic limit condition is met, the internal second-order work is nil. A class of incremental external loadings causes the kinetic energy to increase dramatically, leading to the sudden collapse of the specimen, as observed in laboratory.展开更多
This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we p...This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we prove the painlevé non integrability of the equation. Secondly, A new breather solution and lump type solution are obtained based on the parameter limit method and Hirota’s bilinear method. Besides, some interaction behavior between lump type solution and N-soliton solutions (N is any positive integer) are studied. We construct the existence theorem of the interaction solution and give the process of calculation and proof. We also give a concrete example to illustrate the effectiveness of the theorem, and some spatial structure figures are displayed to reflect the evolutionary behavior of the interaction solutions with the change of soliton number N and time t.展开更多
The Mach Effect Thruster (MET) is a propellant—less space drive which uses Mach’s principle to produce thrust in an accelerating material which is undergoing mass—energy fluctuations, [1]-[3]. Mach’s principle is ...The Mach Effect Thruster (MET) is a propellant—less space drive which uses Mach’s principle to produce thrust in an accelerating material which is undergoing mass—energy fluctuations, [1]-[3]. Mach’s principle is a statement that the inertia of a body is the result of the gravitational interaction of the body with the rest of the mass-energy in the universe. The MET device uses electric power of 100 - 200 Watts to operate. The thrust produced by these devices, at the present time, are small on the order of a few micro-Newtons. We give a physical description of the MET device and apparatus for measuring thrusts. Next we explain the basic theory behind the device which involves gravitation and advanced waves to incorporate instantaneous action at a distance. The advanced wave concept is a means to conserve momentum of the system with the universe. There is no momentun violation in this theory. We briefly review absorber theory by summarizing Dirac, Wheeler-Feynman and Hoyle-Narlikar (HN). We show how Woodward’s mass fluctuation formula can be derived from first principles using the HN-theory which is a fully Machian version of Einstein’s relativity. HN-theory reduces to Einstein’s field equations in the limit of smooth fluid distribution of matter and a simple coordinate transformation.展开更多
文摘The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an analylical upper-bound solution todrawing stress through idling rolls has been obtained in this paper.
文摘针对现有850 k W风力机叶片,分析其材料、结构及铺层状态,对比传统叶片有限元模型,将描述叶片主要结构的弦长、扭角采用分段函数形式表达,采用MATLAB编程并结合ANSYS二次开发建立风力机叶片参数化几何模型.基于动量-叶素理论的BLADED软件计算叶片各截面处的极限载荷,并于叶片分段施加载荷增量.动力学分析得到叶片前三阶挥舞和摆振频率及一阶扭转频率,其与实测固有频率比较,分析并验证叶片于共振区外运行.静力分析得到叶片挥舞位移及关键部位应力分布,通过最大应力准则和蔡-胡(Tsai-Wu)准则对翼面进行强度校核(其他部位同理校核),表明叶片在极限状态下仍能保持安全运行.该研究描绘了叶片主要力学性能,为叶片进一步优化奠定了基础.
基金ThearticlesupportedfinanciallybyNationalNaturalScienceFoundationofChina (No .5 99740 2 0 )andSpecialFoundationofShaanxiEdu cationCommittee (No .99Jk2 2 0 )
文摘The characteristic of coal spontaneous combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large scale experimental unit loading coal 1 000 kg. According to the field change of gas concentration and coal temperature determined through experiment of coal self ignite at low temperature stage, and on the basis of hydromechanics and heat transfer theory, some parameters can be calculated at different low temperature stage, such as, oxygen consumption rate, heat liberation intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self ignite and forecasting coal spontaneous combustion. According to coal exothermic capability and its thermal storage surroundings, thermal equilibrium is applied to deduce the computational method of limit parameter of coal self ignite. It offers a quantitative theoretic criterion for coal self ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal spontaneous combustion is quantitatively analyzed, such as, spontaneous combustion period of coal, critical temperature, oxygen consumption rate, heat liberation intensity, and limit parameter of coal self ignite.
基金financially supported by the Research Council of Norway granted through the Department of Marine Technologythe Centre for Ships and Ocean Structures(CeSOS) and the the Centre for Autonomous Marine Operations and Systems(AMOS) from the Norwegian University of Science and Technology(NTNU)the financial support from Escuela Politécnica Nacional(EPN)through the project PIMI-15-03"Investigación y evaluación de sistemas innovadores de propulsión distribuida con ingestión de capa límite para mejorar la eficiencia propulsiva y térmica de vehículos aéreos no tripulados aplicados en los sectores:agrícola,medicina y vigilancia"
文摘Current installation costs of offshore wind turbines(OWTs) are high and profit margins in the offshore wind energy sector are low, it is thus necessary to develop installation methods that are more efficient and practical. This paper presents a numerical study(based on a global response analysis of marine operations) of a novel procedure for installing the tower and Rotor Nacelle Assemblies(RNAs) on bottom-fixed foundations of OWTs. The installation procedure is based on the inverted pendulum principle. A cargo barge is used to transport the OWT assembly in a horizontal position to the site, and a medium-size Heavy Lift Vessel(HLV) is then employed to lift and up-end the OWT assembly using a special upending frame. The main advantage of this novel procedure is that the need for a huge HLV(in terms of lifting height and capacity) is eliminated. This novel method requires that the cargo barge is in the leeward side of the HLV(which can be positioned with the best heading) during the entire installation. This is to benefit from shielding effects of the HLV on the motions of the cargo barge, so the foundations need to be installed with a specific heading based on wave direction statistics of the site and a typical installation season. Following a systematic approach based on numerical simulations of actual operations, potential critical installation activities, corresponding critical events, and limiting(response) parameters are identified. In addition, operational limits for some of the limiting parameters are established in terms of allowable limits of sea states. Following a preliminary assessment of these operational limits, the duration of the entire operation, the equipment used, and weather-and water depth-sensitivity, this novel procedure is demonstrated to be viable.
基金the French Research Network Me Ge (Multiscale and Multiphysics Couplings in Geo-environmental Mechanics GDR CNRS 3176/2340, 2008e2015) for having supported this work
文摘Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusing with regard to granular soils, because it is not associated with an obvious phenomenology. In this study, we built a proper framework, using the second-order work theory, to describe some failure modes in geomaterials based on energy conservation. The occurrence of failure is defined by an abrupt increase in kinetic energy. The increase in kinetic energy from an equilibrium state, under incremental loading, is shown to be equal to the difference between the external second-order work,involving the external loading parameters, and the internal second-order work, involving the constitutive properties of the material. When a stress limit state is reached, a certain stress component passes through a maximum value and then may decrease. Under such a condition, if a certain additional external loading is applied, the system fails, sharply increasing the strain rate. The internal stress is no longer able to balance the external stress, leading to a dynamic response of the specimen. As an illustration, the theoretical framework was applied to the well-known undrained triaxial test for loose soils. The influence of the loading control mode was clearly highlighted. It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory. When the plastic limit condition is met, the internal second-order work is nil. A class of incremental external loadings causes the kinetic energy to increase dramatically, leading to the sudden collapse of the specimen, as observed in laboratory.
文摘This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we prove the painlevé non integrability of the equation. Secondly, A new breather solution and lump type solution are obtained based on the parameter limit method and Hirota’s bilinear method. Besides, some interaction behavior between lump type solution and N-soliton solutions (N is any positive integer) are studied. We construct the existence theorem of the interaction solution and give the process of calculation and proof. We also give a concrete example to illustrate the effectiveness of the theorem, and some spatial structure figures are displayed to reflect the evolutionary behavior of the interaction solutions with the change of soliton number N and time t.
文摘The Mach Effect Thruster (MET) is a propellant—less space drive which uses Mach’s principle to produce thrust in an accelerating material which is undergoing mass—energy fluctuations, [1]-[3]. Mach’s principle is a statement that the inertia of a body is the result of the gravitational interaction of the body with the rest of the mass-energy in the universe. The MET device uses electric power of 100 - 200 Watts to operate. The thrust produced by these devices, at the present time, are small on the order of a few micro-Newtons. We give a physical description of the MET device and apparatus for measuring thrusts. Next we explain the basic theory behind the device which involves gravitation and advanced waves to incorporate instantaneous action at a distance. The advanced wave concept is a means to conserve momentum of the system with the universe. There is no momentun violation in this theory. We briefly review absorber theory by summarizing Dirac, Wheeler-Feynman and Hoyle-Narlikar (HN). We show how Woodward’s mass fluctuation formula can be derived from first principles using the HN-theory which is a fully Machian version of Einstein’s relativity. HN-theory reduces to Einstein’s field equations in the limit of smooth fluid distribution of matter and a simple coordinate transformation.