期刊文献+
共找到1,607篇文章
< 1 2 81 >
每页显示 20 50 100
Probabilistic Analysis of Slope Using Finite Element Approach and Limit Equilibrium Approach around Amalpata Landslide of West Central, Nepal
1
作者 Mahendra Acharya Khomendra Bhandari +2 位作者 Sandesh Dhakal Aasish Giri Prabin Kafle 《International Journal of Geosciences》 CAS 2024年第5期416-432,共17页
The stability study of the ongoing and recurring Amalpata landslide in Baglung in Nepal’s Gandaki Province is presented in this research. The impacted slope is around 200 meters high, with two terraces that have diff... The stability study of the ongoing and recurring Amalpata landslide in Baglung in Nepal’s Gandaki Province is presented in this research. The impacted slope is around 200 meters high, with two terraces that have different slope inclinations. The lower bench, located above the basement, consistently fails and sets others up for failure. The fluctuating water level of the slope, which travels down the slope masses, exacerbates the slide problem. The majority of these rocks are Amalpata landslide area experiences several structural disruptions. The area’s stability must be evaluated in order to prevent and control more harm from occurring to the nearby agricultural land and people living along the slope. The slopes’ failures increase the damages of house existing in nearby area and the erosion of the slope. Two modeling techniques the finite element approach and the limit equilibrium method were used to simulate the slope. The findings show that, in every case, the terrace above the basement is where the majority of the stress is concentrated, with a safety factor of near unity. Using probabilistic slope stability analysis, the failure probability was predicted to be between 98.90% and 100%. 展开更多
关键词 Finite Element Approach limit equilibrium method SLOPE Factor of Safety
下载PDF
Stability analysis of tunnel face reinforced with face bolts
2
作者 TIAN Chongming JIANG Yin +3 位作者 YE Fei OUYANG Aohui HAN Xingbo SONG Guifeng 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2445-2461,共17页
Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systemat... Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systematically studied.Based on the theory of linear elastic mechanics,this study delved into the specific mechanisms of bolt reinforcement on the tunnel face in both horizontal and vertical dimensions.It also identified the primary failure types of bolts.Additionally,a design approach for tunnel face bolts that incorporates spatial layout was established using the limit equilibrium method to enhance the conventional wedge-prism model.The proposed model was subsequently validated through various means,and the specific influence of relevant bolt design parameters on tunnel face stability was analyzed.Furthermore,design principles for tunnel face bolts under different geological conditions were presented.The findings indicate that bolt failure can be categorized into three stages:tensile failure,pullout failure,and comprehensive failure.Increasing cohesion,internal friction angle,bolt density,and overlap length can effectively enhance tunnel face stability.Due to significant variations in stratum conditions,tailored design approaches based on specific failure stages are necessary for bolt design. 展开更多
关键词 Highway tunnels Tunnel face Face bolts limit equilibrium method Slice method
下载PDF
Overhanging rock slope by design:An integrated approach using rock mass strength characterisation,large-scale numerical modelling and limit equilibrium methods 被引量:10
3
作者 Paul Schlotfeldt Davide Elmo Brad Panton 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期72-90,共19页
Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlight... Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope. 展开更多
关键词 Rock slopes Discrete fracture network(DFN) Rock mass strength characterisation Numerical modelling limit equilibrium(LE) methods
下载PDF
Lateral Bearing Capacity of Modified Suction Caissons Determined by Using the Limit Equilibrium Method 被引量:6
4
作者 LI Da-yong MA Shi-li +1 位作者 ZHANG Yu-kun CHEN Fu-quan 《China Ocean Engineering》 SCIE EI CSCD 2018年第4期461-466,共6页
The modified suction caisson(MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wi... The modified suction caisson(MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wind turbine foundation subjected to larger lateral loads compared with the imposed vertical loads. Determination of the lateral bearing capacity is a key issue for the MSC design. The formula estimating the lateral bearing capacity of the MSC was proposed in terms of the limit equilibrium method and was verified by the test results. Parametric studies on the lateral bearing capacity were also carried out. It was found that the lateral bearing capacity of the MSC increases with the increasing length and radius of the external skirt, and the lateral bearing capacity increases linearly with the increasing coefficient of subgrade reaction. The maximum lateral bearing capacity of the MSC is attained when the ratio of the radii of the internal compartment to the external skirt equals 0.82 and the ratio of the lengths of the external skirt to the internal compartment equals 0.48, provided that the steel usage of the MSC is kept constant. 展开更多
关键词 modified suction caissons(MSCs) lateral bearing capacity limit equilibrium method parametric studies
下载PDF
A Generalized Limit Equilibrium Method for the Solution of Active Earth Pressure on a Retaining Wall 被引量:11
5
作者 OUYANG Chao-jun XU Qiang +2 位作者 HE Si-ming LUO Yu WU Yong 《Journal of Mountain Science》 SCIE CSCD 2013年第6期1018-1027,共10页
In this paper, a generalized limit equilibrium method of solving the active earth pressure problem behind a retaining wall is proposed.Differing from other limit equilibrium methods, an arbitrary slip surface shape wi... In this paper, a generalized limit equilibrium method of solving the active earth pressure problem behind a retaining wall is proposed.Differing from other limit equilibrium methods, an arbitrary slip surface shape without any assumptions of pre-defined shapes is needed in the current framework, which is verified to find the most probable failure slip surface. Based on the current computational framework, numerical comparisons with experiment, discrete element method and other methods are carried out. In addition, the influences of the inclination of the wall, the soil cohesion, the angle of the internal friction of the soil, the slope inclination of the backfill soil on the critical pressure coefficient of the soil, the point of application of the resultant earth pressure and the shape of the slip surface are also carefully investigated. The results demonstrate that limit equilibrium solution from predefined slip plane assumption, including Coulomb solution, is a special case of current computational framework. It is well illustrated that the current method is feasible to evaluate the characteristics of earth pressure problem. 展开更多
关键词 limit equilibrium method Retainingwall Active earth pressure Critical slip surface
下载PDF
Comprehensive analysis of slope stability and determination of stable slopes in the Chador-Malu iron ore mine using numerical and limit equilibrium methods 被引量:18
6
作者 ATAEI M BODAGHABADI S 《Journal of China University of Mining and Technology》 2008年第4期488-493,共6页
One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was consid... One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was considered vital to perform a comprehensive slope stability analysis. At first, we divided the existing rock hosting pit into six zones and a geotechnical map was prepared. Then, the value of MRMR (Mining Rock Mass Rating) was determined for each zone. Owing to the fact that the Chador-Malu iron ore mine is located in a highly tectonic area and the rock mass completely crushed, the Hoek-Brown failure criterion was found suitable to estimate geo-mechanical parameters. After that, the value of cohesion (c) and friction angle (tp) were calculated for different geotechnical zones and relative graphs and equations were derived as a function of slope height. The stability analyses using numerical and limit equilibrium methods showed that some instability problems might occur by increasing the slope height. Therefore, stable slopes for each geotechnical zone and prepared sections were calculated and presented as a function of slope height. 展开更多
关键词 slope stability limit equilibrium method numerical method rock mass classification
下载PDF
A Method Combining Numerical Analysis and Limit Equilibrium Theory to Determine Potential Slip Surfaces in Soil Slopes 被引量:5
7
作者 XIAO Shiguo YAN Liping CHENG Zhiqiang 《Journal of Mountain Science》 SCIE CSCD 2011年第5期718-727,共10页
This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any po... This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any point in a slope is determined using the Coulomb’s strength principle and the extremum principle based on the ratio of the shear strength to the shear stress at that point. The ratio, which is considered as an analysis index, can be computed once the stress field of the soil slope is obtained. The critical slip direction at any point in the slope must be the tangential direction of a potential slip surface passing through the point. Therefore, starting from a point on the top of the slope surface or on the horizontal segment outside the slope toe, the increment with a small distance into the slope is used to choose another point and the corresponding slip direction at the point is computed. Connecting all the points used in the computation forms a potential slip surface exiting at the starting point. Then the factor of safety for any potential slip surface can be computed using limit equilibrium method like Spencer method. After factors of safety for all the potential slip surfaces are obtained, the minimum one is the factor of safety for the slope and the corresponding potential slip surface is the critical slip surface of the slope. The proposed method does not need to pre-assume the shape of potential slip surfaces. Thus it is suitable for any shape of slip surfaces. Moreover the method is very simple to be applied. Examples are presented in this paper to illustrate the feasibility of the proposed method programmed in ANSYS software by macro commands. 展开更多
关键词 Soil slope Stress field Potential slip surface Slope stability Factor of safety Numerical analysis limit equilibrium method ANSYS software
下载PDF
THE APPLICATION OF WEINSTEIN-CHIEN′S METHOD——THE UPPER AND LOWER LIMITS OF FUNDAMENTAL FREQUENCY OF RECTANGULAR PLATES WITH EDGES ARE THE MIXTURE OF SIMPLY SUPPORTED PORTIONS AND CLAMPED PORTIONS
8
作者 陈政清 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1984年第3期1399-1408,共10页
In this paper, the method of relaxed boundary conditions is applied to rectangular plates with edges which are a sort of the mixture of simply supported portions and clamped portions, so that the lower limit of fundam... In this paper, the method of relaxed boundary conditions is applied to rectangular plates with edges which are a sort of the mixture of simply supported portions and clamped portions, so that the lower limit of fundamental frequency of such plates is evaluated. A kind of polynomial satisfying the displacement boundary conditions is designed, os that it is enabled to evaluate the upper limit of fundamental frequency by Ritz' method. The practical calculation examples solved by these methods have given satisfactory results. At the end of this paper, it is pointed out that the socalled exact solution of such plates usually evaluated by the force superposition method is essentially a kind of lower limit of solution, if the truncated error of series which occurs in actual calculation is considered. 展开更多
关键词 THE UPPER AND LOWER limitS OF FUNDAMENTAL FREQUENCY OF RECTANGULAR PLATES WITH EDGES ARE THE MIXTURE OF SIMPLY supportED PORTIONS AND CLAMPED PORTIONS S method THE APPLICATION OF WEINSTEIN-CHIEN
下载PDF
A new method for the stability analysis of geosynthetic-reinforced slopes 被引量:1
9
作者 SONG Fei CHEN Ru-yi +1 位作者 MA Li-qiu CAO Geng-ren 《Journal of Mountain Science》 SCIE CSCD 2016年第11期2069-2078,共10页
This paper is concerned with the stability analysis of reinforced slopes.A new approach based on the limit equilibrium principle is proposed to evaluate the stability of the reinforced slopes.The effect of reinforceme... This paper is concerned with the stability analysis of reinforced slopes.A new approach based on the limit equilibrium principle is proposed to evaluate the stability of the reinforced slopes.The effect of reinforcement is modeled as an equivalent restoring force acting the bottom of the slice and added into the general limit equilibrium(GLE) method.The equations of force and moment equilibrium of the slice are derived and corresponding iterative solution methods are provided.The new method can satisfy both the force and the moment equilibrium and be applicable to the critical failure surface of arbitrary form.Furthermore,the results predicted by the proposed method are compared with the calculation examples of other researchers and the centrifuge model test results to validate its correctness and effectiveness. 展开更多
关键词 Reinforced slope Stability analysis limit equilibrium General limit equilibrium method Centrifuge model test
下载PDF
LOWER BOUND LIMIT ANALYSIS OF THREE-DIMENSIONAL ELASTOPLASTIC STRUCTURES BY BOUNDARY ELEMENT METHOD 被引量:1
10
作者 刘应华 张晓峰 岑章志 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第12期1466-1474,共9页
Based on the lower bound theorem of limit analysis, a solution procedure for limit analysis of three_dimensional elastoplastic structures was established using conventional boundary element method (BEM). The elastic s... Based on the lower bound theorem of limit analysis, a solution procedure for limit analysis of three_dimensional elastoplastic structures was established using conventional boundary element method (BEM). The elastic stress field for lower bound limit analysis was computed directly by three_dimensional boundary element method (3_D BEM). The self_equilibrium stress field was constructed by the linear combination of several self_equilibrium “basis vectors” which can be computed by elastic_plastic incremental iteration of 3_D BEM analysis. The lower bound limit analysis problem was finally reduced to a series of nonlinear programming sub_problems with relatively few optimal variables. The complex method was used to solve the nonlinear programming sub_problems. The numerical results show that the present solution procedure has good accuracy and high efficiency. 展开更多
关键词 BEM lower bound limit analysis self-equilibrium stress field nonlinear programming complex method
下载PDF
Influence of joint spacing and rock characteristics on the toppling stability of cut rock slope through a simplified limit equilibrium method
11
作者 ZHANG Xue-peng JIANG Yu-jing +6 位作者 DU Yan WANG Ke-peng CAI Yue WANG Xing-da SU Hang GOLSANAMI Naser LIU Bao-guo 《Journal of Central South University》 SCIE EI CAS 2024年第8期2694-2702,共9页
Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a... Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together. 展开更多
关键词 slope stability flexural toppling rock slope simplified limit equilibrium method
下载PDF
Hybrid method of limit equilibrium and finite element internal force for analysis of arch dam stability against sliding 被引量:6
12
作者 BAO TengFei1,2,3,XU BaoSong1,2,3 & ZHENG XueQing1,2,3 1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China 2National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety,Nanjing 210098,China 3College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第4期793-798,共6页
A hybrid method of limit equilibrium and finite element internal force for analysis of arch dam stability against sliding is presented.The finite element internal force method(FEIFM) is used to provide more accurate t... A hybrid method of limit equilibrium and finite element internal force for analysis of arch dam stability against sliding is presented.The finite element internal force method(FEIFM) is used to provide more accurate thrust forces acting on the faces of a slip body,and the limit equilibrium method(LEM) is employed to evaluate the factor of safety of the slip body.The method presented can deal with a slip body with large amount of geometrically complex slip faces.In addition,compared with the traditional LEM,it can meet the balance condition of the forces in the slip faces.An example shows that the factor of safety obtained by the method presented agrees well with the theoretical solution.A practical example is also presented to demonstrate the application of the method in the stability analysis of an arch dam project.The results from the examples show that the method is promising in analysis of arch dam stability against sliding. 展开更多
关键词 arch dam stability against sliding limit equilibrium method finite element internal force method
原文传递
The limit analysis in soil and rock:a mature discipline of geomechanics 被引量:1
13
作者 CHEN Zu-yu 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第11期1712-1724,共13页
The solution of a slope stability problem can be approached by its least upper-bound and maximum lower-bound with high accuracy. The limit equilibrium methods that employ vertical slices imply a lower bound of the fac... The solution of a slope stability problem can be approached by its least upper-bound and maximum lower-bound with high accuracy. The limit equilibrium methods that employ vertical slices imply a lower bound of the factor of safety. It has been successfully extended to the area of active earth pressure analysis that accounts for different input of locations of earth pressure applications. Those methods that employ slices with inclined interfaces give an upper-bound approach to the stability analysis. It enjoys a sound mechanical background and is able to provide accurate solutions of soil plasticity. It has been successfully extended to the area of bearing capacity analysis in which various empirical coefficients are no longer necessary. The 3D upper- and lower-bound methods under this framework have been made possible and show great potential for solving various engineering problems. 展开更多
关键词 limit analysis GEOMECHANICS Slope stability problem limit equilibrium method
下载PDF
The prediction of external flow field and hydrodynamic force with limited data using deep neural network
14
作者 Tong-sheng Wang Guang Xi +1 位作者 Zhong-guo Sun Zhu Huang 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第3期549-570,共22页
Predicting the external flow field with limited data or limited measurements has attracted long-time interests of researchers in many industrial applications.Physics informed neural network(PINN)provides a seamless fr... Predicting the external flow field with limited data or limited measurements has attracted long-time interests of researchers in many industrial applications.Physics informed neural network(PINN)provides a seamless framework for combining the measured data with the deep neural network,making the neural network capable of executing certain physical constraints.Unlike the data-driven model to learn the end-to-end mapping between the sensor data and high-dimensional flow field,PINN need no prior high-dimensional field as the training dataset and can construct the mapping from sensor data to high dimensional flow field directly.However,the extrapolation of the flow field in the temporal direction is limited due to the lack of training data.Therefore,we apply the long short-term memory(LSTM)network and physics-informed neural network(PINN)to predict the flow field and hydrodynamic force in the future temporal domain with limited data measured in the spatial domain.The physical constraints(conservation laws of fluid flow,e.g.,Navier-Stokes equations)are embedded into the loss function to enforce the trained neural network to capture some latent physical relation between the output fluid parameters and input tempo-spatial parameters.The sparsely measured points in this work are obtained from computational fluid dynamics(CFD)solver based on the local radial basis function(RBF)method.Different numbers of spatial measured points(4–35)downstream the cylinder are trained with/without the prior knowledge of Reynolds number to validate the availability and accuracy of the proposed approach.More practical applications of flow field prediction can compute the drag and lift force along with the cylinder,while different geometry shapes are taken into account.By comparing the flow field reconstruction and force prediction with CFD results,the proposed approach produces a comparable level of accuracy while significantly fewer data in the spatial domain is needed.The numerical results demonstrate that the proposed approach with a specific deep neural network configuration is of great potential for emerging cases where the measured data are often limited. 展开更多
关键词 Flow field prediction hydrodynamic force prediction long short-term memory physics informed neural network limited data local radial basis function method
原文传递
基于极限平衡法的危岩倾覆稳定性三维计算方法 被引量:1
15
作者 彭海游 谢强 +3 位作者 陈柏林 檀康 王琦 杨文君 《岩土力学》 EI CAS CSCD 北大核心 2024年第2期552-562,共11页
目前危岩防治工作中,危岩稳定性评价主要以简化后的二维剖面作为计算模型。由于自然界中的危岩形态极不规则,采用二维剖面计算模型并不能真实反映危岩受力情况。为了研究危岩稳定性三维计算方法,在前人研究基础上,基于极限平衡理论,提... 目前危岩防治工作中,危岩稳定性评价主要以简化后的二维剖面作为计算模型。由于自然界中的危岩形态极不规则,采用二维剖面计算模型并不能真实反映危岩受力情况。为了研究危岩稳定性三维计算方法,在前人研究基础上,基于极限平衡理论,提出了由后缘裂缝抗拉强度控制的危岩倾覆稳定性三维计算公式,采用数值积分和空间几何方法给出了在危岩单体三维模型基础上求解危岩后缘岩体抗拉力、水压力及其力矩计算公式和实现流程。以三峡库区瞿塘峡吊嘴危岩为实例开展了应用,并通过数值分析进行了验证。通过不同形态危岩的三维稳定性分析,讨论了三维与二维稳定性计算结果的关系,对比发现危岩形态对稳定性计算结果有明显影响,三维计算较二维计算更准确和实用。 展开更多
关键词 危岩 倾覆稳定性 三维 极限平衡法
下载PDF
广义对数螺旋型滑面模型的构建与验证 被引量:1
16
作者 李亮 李媛媛 邓东平 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第1期171-182,共12页
临界滑动面的合理确定是边坡稳定性分析的关键问题之一。传统的边坡滑动面假设方法构造生成的潜在滑动面形式单一,且无法考虑复杂边坡中土层强度参数变化对临界滑动面形状的影响,从而降低了边坡稳定性分析结果的可靠性。基于此,提出一... 临界滑动面的合理确定是边坡稳定性分析的关键问题之一。传统的边坡滑动面假设方法构造生成的潜在滑动面形式单一,且无法考虑复杂边坡中土层强度参数变化对临界滑动面形状的影响,从而降低了边坡稳定性分析结果的可靠性。基于此,提出一种新的广义对数螺旋型滑面模型,该模型可生成包含传统圆弧滑动面和对数螺旋滑动面在内的多种形式的潜在滑动面;并针对非均质边坡中各土层抗剪强度不同的特点,采用多中心分段构造策略,将该滑面模型应用于非均质边坡稳定性分析中。基于极限平衡理论计算滑动面安全系数并搜索临界滑动面,对边坡进行稳定性评估。选取多个均质边坡及多种型式的非均质边坡(水平分层、倾斜分层和斜折线分层)经典算例与现有研究成果以及数值模拟软件获得的结果进行对比分析,验证该滑面模型的合理性与优势性。研究结果表明:文中方法计算所得安全系数与其他方法相比更小,相对误差在5%以内。能够得到传统滑动面假设方法下难以搜索到的临界滑动面,并与数值模拟结果吻合度较好,稳定性分析结果更接近实际情况。由此说明,此方法用于均质边坡及非均质边坡稳定性分析是合理可行的,有望为工程实践提供更优的临界滑动面解决方案。 展开更多
关键词 边坡稳定性分析 滑面模型 广义对数螺旋滑面 极限平衡法 临界滑动面
下载PDF
Influence of confined water on the limit support pressure of tunnel face in weakly water-rich strata
17
作者 LI Yun-fa WU Guo-jun +2 位作者 CHEN Wei-zhong YUAN Jing-qiang HUO Meng-zhe 《Journal of Central South University》 SCIE EI CAS 2024年第8期2844-2859,共16页
In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine... In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality. 展开更多
关键词 weakly water-rich strata confined aquifer limit support pressure finite element method multiple linear regression
下载PDF
石灰石露天矿高陡边坡稳定性计算分析 被引量:5
18
作者 赵翔 朱刚 +2 位作者 温楷 王荣 廖正彪 《水泥技术》 2024年第2期34-40,共7页
以西南某石灰石矿高陡边坡为研究对象,根据矿山边坡现状、边坡岩体结构和结构面发育特征因素对“现状边坡”和“终了边坡”进行地质分区,通过岩石室内物理力学试验获得坡体岩石物理力学参数,采用GSI法计算边坡岩体内摩擦角、粘聚力、变... 以西南某石灰石矿高陡边坡为研究对象,根据矿山边坡现状、边坡岩体结构和结构面发育特征因素对“现状边坡”和“终了边坡”进行地质分区,通过岩石室内物理力学试验获得坡体岩石物理力学参数,采用GSI法计算边坡岩体内摩擦角、粘聚力、变形模量和泊松比等参数,评估边坡地质强度特性,采用Morgenstern-Price极限平衡法分三种荷载工况分别计算“现状边坡”和“终了边坡”各分区稳定性系数。经分析,该石灰石矿各地质分区“现状边坡”和“终了边坡”稳定性好,采场边坡参数设计合理,可为矿山扩产安全设施设计和安全生产提供参考。 展开更多
关键词 高陡边坡 地质强度指标 极限平衡法 安全生产
下载PDF
基于时程分析法的中美隔震设计对比研究 被引量:1
19
作者 张蜀泸 张志军 +1 位作者 李嘉琪 罗秀 《四川建筑科学研究》 2024年第2期16-24,共9页
介绍了中国《建筑隔震设计标准》(GB/T 51408—2021)(以下简称《隔标》)和美国Minimum design loads and associated criteria for buildings and other structures(ASCE 7-16)隔震设计的相关要求,并针对基于《建筑抗震设计规范》(GB 50... 介绍了中国《建筑隔震设计标准》(GB/T 51408—2021)(以下简称《隔标》)和美国Minimum design loads and associated criteria for buildings and other structures(ASCE 7-16)隔震设计的相关要求,并针对基于《建筑抗震设计规范》(GB 50011—2010)(2016年版)(以下简称《抗规》)设计的某9度区近场隔震结构,进行了两国规范的设计对比。按《抗规》设计的隔震结构,仍然能满足《隔标》的设计要求。ASCE 7-16对于隔震支座考虑了老化和环境、测试、制造等因素引起的性能参数变化,并按隔震支座的上限及下限属性进行了结构设计。基于相同地震概率水准(50年超越概率2%)的设计对比研究表明,ASCE 7-16的等效侧力法计算值高于《隔标》,按ASCE 7-16要求选择的地震波反应谱明显高于《隔标》,其时程分析结果也大于中国规范,对隔震支座的性能要求更高。 展开更多
关键词 隔震设计 上、下限属性 时程分析法 等效侧力法
下载PDF
基于双折减系数法与极限平衡法的顺层滑坡稳定性分析
20
作者 李小根 盛济铭 +2 位作者 王静 刘泓辰 毛新宇 《华北水利水电大学学报(自然科学版)》 北大核心 2024年第6期81-88,共8页
以四川省布拖县龙潭乡冯家坪滑坡为例,利用FLAC3D软件设计了基于双折减系数法的滑坡稳定性分析程序,应用“GIS-Rhino-FLAC3D”耦合技术建立三维地质体模型。考虑黏聚力和内摩擦角在滑坡失稳过程中衰减速度和弱化程度的不同,以及非饱和... 以四川省布拖县龙潭乡冯家坪滑坡为例,利用FLAC3D软件设计了基于双折减系数法的滑坡稳定性分析程序,应用“GIS-Rhino-FLAC3D”耦合技术建立三维地质体模型。考虑黏聚力和内摩擦角在滑坡失稳过程中衰减速度和弱化程度的不同,以及非饱和土中基质吸力对土体抗剪强度的影响,提出一种以黏聚力和摩擦力的衰减权重定义综合安全系数的双折减系数法,并采用极限平衡法作对比计算,研究分析了顺层滑坡的稳定性。结果表明:设计的抗剪强度参数双折减程序可以得出安全系数云图,直观地反映滑坡安全系数的空间分布特征;与传统强度折减法相比,所提出的双折减系数法计算的滑动面分布范围和综合安全系数更精确,较极限平衡法误差更小,可以准确地反映滑坡的稳定状态。研究结果可为双折减系数法应用于滑坡灾害的防治提供参考。 展开更多
关键词 顺层滑坡 极限平衡法 双折减系数法 GIS-Rhino-FLAC3D 稳定性分析
下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部