Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ...Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.展开更多
Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this ...Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this work,we present the development of a compact and automatic PNF system for on-site agricultural applications.The system utilized a gliding-arc discharge as the plasma source and employed a dual-loop design to generate NO_(x)from air and water under atmospheric conditions.Experimental results showed that the system with a dualloop design performs well in terms of energy costs and production rates.Optimal operational parameters for the system were determined through experimentation,resulting in an energy cost of 13.9 MJ mol^(-1)and an energy efficiency of 16 g kWh^(-1)for NO_(3)^(-)production,respectively.Moreover,the concentration of exhausted NO_(x)was below the emission standards.Soilless lettuce cultivation experiments demonstrated that NO_(x)^(-)produced by the PNF system could serve as liquid nitrate nitrogen fertilizer.Overall,our work demonstrates the potential of the developed PNF system for on-site application in the production of green-leaf vegetables.展开更多
Phaeocystis globosa is an important unicellular eukaryotic alga that can also form colonies.P.globosa can cause massive harmful algal blooms and plays an important role in the global carbon or sulfur cycling.Thus far,...Phaeocystis globosa is an important unicellular eukaryotic alga that can also form colonies.P.globosa can cause massive harmful algal blooms and plays an important role in the global carbon or sulfur cycling.Thus far,the ecophysiology of P.globosa has been investigated by numerous studies.However,the proteomic response of P.globosa to nitrogen depletion remains largely unknown.We compared four protein preparation methods of P.globosa for two-dimensional electrophoresis(2-DE)(Urea/Triton X-100 with trichloroacetic acid(TCA)/acetone precipitation;TCA/acetone precipitation;Radio Immuno Precipitation Assay(RIPA)with TCA/acetone precipitation;and Tris buffer).Results show that the combination of RIPA with TCA/acetone precipitation had a clear gel background and showed the best protein spot separation effect,based on which the proteomic response to nitrogen depletion was studied using 2-DE.In addition,we identified six differentially expressed proteins whose relative abundance increased or decreased more than 1.5-fold(P<0.05).Most proteins could not be identified,which might be attributed to the lack of genomic sequences of P.globosa.Under nitrogen limitation,replication protein-like,RNA ligase,and sn-glycerol-3-phosphate dehydrogenase were reduced,which may decrease the DNA replication level and ATP production in P.globosa cells.The increase of endonucleaseⅢand transcriptional regulator enzyme may affect the metabolic and antioxidant function of P.globosa cells and induce cell apoptosis.These findings provide a basis for further proteomic study of P.globosa and the optimization of protein preparation methods of marine microalgae.展开更多
The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,w...The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,we measured the sinking velocity(SV) of Thalassiosira weissflogii using a new phytoplankton video observation instrument and analyzed major biochemical components under varying nutrient conditions.Our results showed that the SV of T.weissflogii under different nutrient limitation conditions varied substantially.The highest SV of(1.77±0.02) m/d was obtained under nitrate limitation,signific antly surpassing that under phosphate limitation at(0.98±0.13) m/d.As the nutrient limitation was released,the SV steadily decreased to(0.32±0.03) m/d and(0.15±0.05) m/d,respectively.Notably;under conditions with limited nitrate and phosphate concentrations,the SV values of T.weissflogii significantly positively correlated with the lipid content(P <0.001),with R^(2) values of 0.86 and 0.69,respectively.The change of the phytoplankton SV was primarily related to the intracellular compo sition,which is controlled by nutrient conditions but did not significantly correlate with transparent extracellular polymer and biosilica contents.The results of this study help to understand the regulation of the vertical sinking process of diatoms by nutrient restriction and provide new insights into phytoplankton dynamics and their relationship with the marine nutrient structure.展开更多
Integrative cultivation practices(ICPs)are essential for enhancing cereal yield and resource use efficiency.However,the effects of ICP on the rhizosphere environment and roots of paddy rice are still poorly understood...Integrative cultivation practices(ICPs)are essential for enhancing cereal yield and resource use efficiency.However,the effects of ICP on the rhizosphere environment and roots of paddy rice are still poorly understood.In this study,four rice varieties were produced in the field.Each variety was treated with six different cultivation techniques,including zero nitrogen application(0 N),local farmers’practice(LFP),nitrogen reduction(NR),and three progressive ICP techniques comprised of enhanced fertilizer N practice and increased plant density(ICP1),a treatment similar to ICP1 but with alternate wetting and moderate drying instead of continuous flooding(ICP2),and the same practices as ICP2 with the application of organic fertilizer(ICP3).The ICPs had greater grain production and nitrogen use efficiency than the other three methods.Root length,dry weight,root diameter,activity of root oxidation,root bleeding rate,zeatin and zeatin riboside compositions,and total organic acids in root exudates were elevated with the introduction of the successive cultivation practices.ICPs enhanced nitrate nitrogen,the activities of urease and invertase,and the diversity of microbes(bacteria)in rhizosphere and non-rhizosphere soil,while reducing the ammonium nitrogen content.The nutrient contents(ammonium nitrogen,total nitrogen,total potassium,total phosphorus,nitrate,and available phosphorus)and urease activity in rhizosphere soil were reduced in all treatments in comparison with the non-rhizosphere soil,but the invertase activity and bacterial diversity were greater.The main root morphology and physiology,and the ammonium nitrogen contents in rhizosphere soil at the primary stages were closely correlated with grain yield and internal nitrogen use efficiency.These findings suggest that the coordinated enhancement of the root system and the environment of the rhizosphere under integrative cultivation approaches may lead to higher rice production.展开更多
Tobacco is an essential cash crop in Zimbabwe and a strategic livelihood option for hundreds of thousands of rural households. However, the crop is linked to negative environmental, economic, and social impacts. The e...Tobacco is an essential cash crop in Zimbabwe and a strategic livelihood option for hundreds of thousands of rural households. However, the crop is linked to negative environmental, economic, and social impacts. The existing studies on tobacco cultivation in Zimbabwe present contradictory findings on the determinants and impacts of adoption, leaving unanswered questions about the crop’s sustainability impact in the country. This article investigates the determinants of smallholder farmers’ decisions to grow tobacco and the associated impacts of adoption. Random and purposive sampling were used to select 273 household surveys, including tobacco and non-tobacco smallholder farmers, and 56 expert interviews to answer the research questions. We employed regression models alongside expert interviews and document analysis to identify the determinants influencing the decision-making process of smallholder farmers in Zimbabwe regarding tobacco cultivation. Additionally, our investigation aimed to elucidate the perceived impacts associated with the adoption of this agricultural practice. The regression analysis indicated that the farmer’s age, education level, farming experience, family size, household income, and perceived high farm profitability are significant drivers of tobacco adoption. We also discovered divergent and convergent perceptions of the critical impacts of tobacco cultivation. The study highlights the need for proactive multi-stakeholder collaboration and sustainable financial arrangements to address the negative impacts of tobacco production. As the primary stakeholder responsible for regulating and promoting agricultural activities, the Zimbabwean government should provide meaningful financial support, increase access to credit, and ensure better market facilities for alternative crops to reduce the over-dependence on tobacco.展开更多
The sinking of phytoplankton is critical to organic matter transportation in the ocean and it is an essential process for the formation of coastal hypoxic zones.This study was based on a field investigation conducted ...The sinking of phytoplankton is critical to organic matter transportation in the ocean and it is an essential process for the formation of coastal hypoxic zones.This study was based on a field investigation conducted during the summer of 2022 in the Changjiang River(Yangtze River) Estuary(CJE) and its adjacent waters.The settling column method was employed to measure the sinking velocity(SV) of different size fractions of phytoplankton at the surface of the sea and to analyze their environmental control mechanisms.The findings reveal significant spatial variation in phytoplankton SV(-0.55-2.41 m/d) within the CJE.High-speed sinking was predominantly observed in phosphate-depleted regions beyond the CJE front.At the same time,an upward trend was more commonly observed in the phosphate-rich regions near the CJE mouth.The SV ranges for different sizefractionated phytoplankton,including micro-(>20 μm),nano-(2-20 μm),and picophytoplankton(0.7-2 μm),were-0.50-4.74 m/d,-1.04-1.59 m/d,and-1.24-1.65 m/d,respectively.Correlation analysis revealed a significant negative correlation between SV and dissolved inorganic phosphorus(DIP),implying that the influence of DIP contributes to SV.The variations in phytoplankton alkaline phosphatase activity suggested a significant increase in SV across all size fractions in the event of phosphorus limitation.Phytoplankton communities with limited photo synthetic capacity(maximum photochemical efficience,Fv/Fm <0.3) were found to have higher SV than that of communities with strong capacity,suggesting a link between sinking and alterations in physiological conditions due to phosphate depletion.The findings from the in situ phosphate enrichment experiments confirmed a marked decrease in SV following phosphate supplementation.These findings suggest that phosphorus limitation is the primary driver of elevated SV in the CJE.This study enhances the comprehension of the potential mechanisms underlying hypoxic zone formation in the CJE,providing novel insights into how nearshore eutrophication influences organic carbon migration.展开更多
Polycarbonate plastics containing bisphenol A (BPA) used to manufacture drinking water bottles. Kurdistan region in northern Iraq is a developed area with increased pollution from plastic bottles. Trace amounts of BPA...Polycarbonate plastics containing bisphenol A (BPA) used to manufacture drinking water bottles. Kurdistan region in northern Iraq is a developed area with increased pollution from plastic bottles. Trace amounts of BPA have been detected in bottled water samples. The absorption of BPA was measured with HPLC using a vertical cultivation system with Bulbs of the Allium Cepa plant planted in these plastic bottles with monitored growth. Vertical cultivation was found to have a low level of BPA in the plant cells, making it a safe cultivation method under specific climate conditions. The mean concentration of BPA in vertical cultivation is 0.19 ug/ml (3.8 ng for a 20 uL injection), and the Limit of Quantification (LOQ) is 0.63 ug/ml (12.7 ng for 20 uL injection). While Scanning Electron Microscope (SEM) shows that the concentrations are relatively low in water samples stored at room temperature compared to those exposed to direct sunlight (40°C) and water bottle samples stored at (-4°C), The correlation coefficients were found to be good (0.9992). SEM is used for plastic bottle samples stored at different temperatures. The images identify compound decay and explore the morphology of BPA in manufactured plastic materials.展开更多
The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcon...The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation.展开更多
In order to enhance the yield and quality of cashew,it is essential to implement high-yield cultivation techniques effectively throughout the production process.Additionally,pest control measures should be employed to...In order to enhance the yield and quality of cashew,it is essential to implement high-yield cultivation techniques effectively throughout the production process.Additionally,pest control measures should be employed to provide technical support for the industrialized development of cashew.展开更多
Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages,...Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages, the system does have its drawbacks, such as soil organic matter reduction and microplastic pollution, which impede the widespread adoption of film mulching cultivation in China. Nonetheless, the advent of degradable film, controlled-release fertilizer, organic fertilizer, and film mulching machinery is promoting the development of rice film mulching cultivation. This review outlines the impact of rice cultivation under film mulching on soil moisture, soil temperature, soil fertility, greenhouse gas emissions, weed control, and disease and pest management. It also elucidates the mechanism of changes in rice growth, yield and quality, water use efficiency, and nitrogen use efficiency. This paper incorporates a review of published research articles and discusses some uncertainties and shortcomings associated with rice cultivation under film mulching. Consequently, prospective research directions for the technology of rice film mulching cultivation are outlined, and recommendations for future research into rice cultivation under film mulching are proposed.展开更多
Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivi...Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.展开更多
Familial hypercholesterolemia(FH)is characterized by elevated low-density lipoprotein cholesterol levels due to genetic mutations,presenting with xanthomas,corneal arch,and severe cardiovascular diseases.Early identif...Familial hypercholesterolemia(FH)is characterized by elevated low-density lipoprotein cholesterol levels due to genetic mutations,presenting with xanthomas,corneal arch,and severe cardiovascular diseases.Early identification,diagnosis,and treatment are crucial to prevent severe complications like acute myocardial infarction.Statins are the primary treatment,supplemented by Ezetimibe and proprotein convertase subtilisin/kexin type 9 inhibitors,though their effectiveness can be limited in severe cases.Over 90%of FH cases remain undiagnosed,and current treatments are often inadequate,underscoring the need for improved diagnostic and management systems.Future strategies include advancements in gene testing,precision medicine,and novel drugs,along with gene therapy approaches like AAV-mediated gene therapy and clustered regularly interspaced short palindromic repeats.Lifestyle modifications,including health education,dietary control,and regular exercise,are essential for managing FH and preventing related diseases.Research into FH-related gene mutations,especially LDLR,is critical for accurate diagnosis and effective treatment.展开更多
Agrochemicals are contemporary, omnipresent tool used in vegetable cultivation. Farmers’ knowledge and awareness of the proper usage of agrochemicals are critical for mitigating the negative effects on human health. ...Agrochemicals are contemporary, omnipresent tool used in vegetable cultivation. Farmers’ knowledge and awareness of the proper usage of agrochemicals are critical for mitigating the negative effects on human health. This cross-sectional study was aimed at assessing the usage knowledge, risk awareness of toxicological and chemical classes, proper handling and use practices for agrochemicals homologated for use in vegetable farming, and the occurrence of health-related symptoms as a result of exposure among these farmers. The study included 93 vegetable growers from agricultural hotspot towns in Fako, southwest Cameroon. The field study, ran from November 2021 to December 2023, using a questionnaire to collect information on farmers demographic, and their knowledge of pesticide classes, and the related risk of associated with the handling of agrochemicals. Results show that all vegetable farmers, particularly those engaged in agribusiness, employ pesticide inputs to maximize production. Six pesticides, two fertilizer types, and one unknown substance were identified. While 23 active compounds were found, the most utilized were abamectin, emamectin (10.46%), dimethoate (9.30%,) and ethoprophos (8.13%). Two active chemicals, dimethoate and methalaxyl, are illegal yet remain in circulation. Toxicological classes I and II, with the greatest harmful effect on human health, were the most commonly utilized (64.27%). Thirty-nine percent of farmers never use personal protection equipment when working with agrochemicals, demonstrating a significant gap in knowledge and awareness of agrochemicals and their various applications and handling procedures in the field. The government should implement an intensive specialized educational program for on-field farmers with incentives in order to promote sustainable agriculture methods that ensure environmental and human safety.展开更多
BACKGROUND Pulse oximetry has become a cornerstone technology in healthcare,providing non-invasive monitoring of oxygen saturation levels and pulse rate.Despite its widespread use,the technology has inherent limitatio...BACKGROUND Pulse oximetry has become a cornerstone technology in healthcare,providing non-invasive monitoring of oxygen saturation levels and pulse rate.Despite its widespread use,the technology has inherent limitations and challenges that must be addressed to ensure accurate and reliable patient care.AIM To comprehensively evaluate the advantages,limitations,and challenges of pulse oximetry in clinical practice,as well as to propose recommendations for optimizing its use.METHODS A systematic literature review was conducted to identify studies related to pulse oximetry and its applications in various clinical settings.Relevant articles were selected based on predefined inclusion and exclusion criteria,and data were synthesized to provide a comprehensive overview of the topic.RESULTS Pulse oximetry offers numerous advantages,including non-invasiveness,real-time feedback,portability,and costeffectiveness.However,several limitations and challenges were identified,including motion artifacts,poor peripheral perfusion,ambient light interference,and patient-specific factors such as skin pigmentation and hemoglobin variants.Recommendations for optimizing pulse oximetry use include technological advancements,education and training initiatives,quality assurance protocols,and interdisciplinary collaboration.CONCLUSION Pulse oximetry is crucial in modern healthcare,offering invaluable insights into patients’oxygenation status.Despite its limitations,pulse oximetry remains an indispensable tool for monitoring patients in diverse clinical settings.By implementing the recommendations outlined in this review,healthcare providers can enhance the effectiveness,accessibility,and safety of pulse oximetry monitoring,ultimately improving patient outcomes and quality of care.展开更多
Through understanding the history and current situation of aesthetic education in China,this paper explains some misunderstandings in the aesthetics of contemporary university art students,such as the insufficiency of...Through understanding the history and current situation of aesthetic education in China,this paper explains some misunderstandings in the aesthetics of contemporary university art students,such as the insufficiency of aesthetic value and ability,as well as the inadequacy of students’creativity due to traditional art education.It is also pointed out that the cultivation of core literacy of art students is a multidimensional and comprehensive process,and these problems need to be solved by schools,teachers,and students,so as to strengthen the inner aesthetic education of students and improve their aesthetic awareness and ability.Aesthetic education is not only an important part of the art classroom but also a key part of fostering students’all-round development and enhancing their humanistic literacy.It is necessary to cultivate students’observation,imagination,image-thinking ability,and creativity,so that they can become artistic talents with independent thinking and innovation.展开更多
Due to industry characteristics or regional limitations,many students in certain majors tend to seek employment in small and medium-sized enterprises(SMEs).SMEs face certain challenges in implementing industry-educati...Due to industry characteristics or regional limitations,many students in certain majors tend to seek employment in small and medium-sized enterprises(SMEs).SMEs face certain challenges in implementing industry-education integration,and there is a lack of mature methods in specific implementation processes and talent cultivation plan generation.Taking the landscape architecture profession as an example,this paper conducts a correlation analysis and cross-analysis of the industry-required professional skills based on surveys of over 300 industry practitioners employed in SMEs.It provides professional skill cultivation modules based on market feedback.This research process and analysis method have certain reference significance for the rapid production of adaptive talent cultivation professional skill modules in other industries targeting SMEs.展开更多
Taking Communication University of Zhejiang as an example,this paper summarizes the overview of the“Etiquette and Cultural Cultivation”course and analyzes the problems existing in the teaching of the course.It also ...Taking Communication University of Zhejiang as an example,this paper summarizes the overview of the“Etiquette and Cultural Cultivation”course and analyzes the problems existing in the teaching of the course.It also explores the ideas and practical strategies of the teaching reform of the course and sums up the innovative results achieved,to provide a reference for relevant teachers.展开更多
As an important link in the development of modern quality education,art education is one of the methods to guide students to have a diversified vision.Under the background of multiculturalism,we need to explore the co...As an important link in the development of modern quality education,art education is one of the methods to guide students to have a diversified vision.Under the background of multiculturalism,we need to explore the connotation and value of art education with the concept of“three highs and four new,”so that students can realize interdisciplinary and cross-cultural cognition through an immersive experience and practical operation in a wide range of multicultural situations,and to develop the knowledge of art education with the concept of“three highs and four new.”Based on the multicultural background,this paper focuses on the integration of multiculturalism into the reform practice of“student-centered”in colleges and universities,so as to cultivate art talents adapted to the multicultural background,in order to achieve the great mission of“three highs and four new”and better lead the innovative development of art education in colleges and universities.展开更多
With the release of China Education Modernization 2035,education modernization has become a national strategic goal.In this context,Chongqing Energy Vocational College is actively exploring the“four integration and f...With the release of China Education Modernization 2035,education modernization has become a national strategic goal.In this context,Chongqing Energy Vocational College is actively exploring the“four integration and four innovation”specialized and creative integration talent cultivation mode,aiming at cultivating high-quality talents with innovative spirit and practical skills.This paper analyzes the status quo and challenges of talent cultivation in higher vocational education,puts forward the main practices of innovation-driven,creation and research,cross-border integration,and innovative practice,and has achieved remarkable results.Additionally,it summarizes the experience revelation and provides a reference for other higher vocational colleges and universities.展开更多
基金This research was founded by the Funds for Creative Research Groups of National Natural Science Foundation of China(Grant No.51921006)the National Natural Science Foundations of China(Grant No.51978224)+2 种基金the National Major Scientific Research Instrument Development Program of China(Grant No.51827811)the National Natural Science Foundation of China,(Grant No.52008141)the Shenzhen Technology Innovation Program(Grant Nos.JCYJ20170811160003571,JCYJ20180508152238111 and JCYJ20200109112803851).
文摘Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.5400202133157A-0-0-00)partially supported by the State Grid Gansu Electric Power Company,China。
文摘Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this work,we present the development of a compact and automatic PNF system for on-site agricultural applications.The system utilized a gliding-arc discharge as the plasma source and employed a dual-loop design to generate NO_(x)from air and water under atmospheric conditions.Experimental results showed that the system with a dualloop design performs well in terms of energy costs and production rates.Optimal operational parameters for the system were determined through experimentation,resulting in an energy cost of 13.9 MJ mol^(-1)and an energy efficiency of 16 g kWh^(-1)for NO_(3)^(-)production,respectively.Moreover,the concentration of exhausted NO_(x)was below the emission standards.Soilless lettuce cultivation experiments demonstrated that NO_(x)^(-)produced by the PNF system could serve as liquid nitrate nitrogen fertilizer.Overall,our work demonstrates the potential of the developed PNF system for on-site application in the production of green-leaf vegetables.
基金the National Natural Science Foundation of China(Nos.42176142,41906111,41806127)the Marine Economic Development Project of Guangdong Province(No.2023B1111050011)+1 种基金the Basic and Applied Basic Research Project of Guangzhou(Nos.2023A04J1548,2023A04J1549)the Outstanding Innovative Talents Cultivation Funded Programs for Doctoral Students of Jinan University(No.2021CXB010)。
文摘Phaeocystis globosa is an important unicellular eukaryotic alga that can also form colonies.P.globosa can cause massive harmful algal blooms and plays an important role in the global carbon or sulfur cycling.Thus far,the ecophysiology of P.globosa has been investigated by numerous studies.However,the proteomic response of P.globosa to nitrogen depletion remains largely unknown.We compared four protein preparation methods of P.globosa for two-dimensional electrophoresis(2-DE)(Urea/Triton X-100 with trichloroacetic acid(TCA)/acetone precipitation;TCA/acetone precipitation;Radio Immuno Precipitation Assay(RIPA)with TCA/acetone precipitation;and Tris buffer).Results show that the combination of RIPA with TCA/acetone precipitation had a clear gel background and showed the best protein spot separation effect,based on which the proteomic response to nitrogen depletion was studied using 2-DE.In addition,we identified six differentially expressed proteins whose relative abundance increased or decreased more than 1.5-fold(P<0.05).Most proteins could not be identified,which might be attributed to the lack of genomic sequences of P.globosa.Under nitrogen limitation,replication protein-like,RNA ligase,and sn-glycerol-3-phosphate dehydrogenase were reduced,which may decrease the DNA replication level and ATP production in P.globosa cells.The increase of endonucleaseⅢand transcriptional regulator enzyme may affect the metabolic and antioxidant function of P.globosa cells and induce cell apoptosis.These findings provide a basis for further proteomic study of P.globosa and the optimization of protein preparation methods of marine microalgae.
基金The Key R&D Program of Zhejiang under contract No.2023C03120the Science Foundation of Donghai Laboratory under contract No.DH-2022KF0215+2 种基金the National Key Research and Development Program of China under contract No.2021YFC3101702the National Programme on Global Change and Air-Sea Interaction (PhaseⅡ)—Hypoxia and Acidification Monitoring Warning Project in the Changjiang EstuaryLong-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE) Project under contract No.SZ2001。
文摘The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,we measured the sinking velocity(SV) of Thalassiosira weissflogii using a new phytoplankton video observation instrument and analyzed major biochemical components under varying nutrient conditions.Our results showed that the SV of T.weissflogii under different nutrient limitation conditions varied substantially.The highest SV of(1.77±0.02) m/d was obtained under nitrate limitation,signific antly surpassing that under phosphate limitation at(0.98±0.13) m/d.As the nutrient limitation was released,the SV steadily decreased to(0.32±0.03) m/d and(0.15±0.05) m/d,respectively.Notably;under conditions with limited nitrate and phosphate concentrations,the SV values of T.weissflogii significantly positively correlated with the lipid content(P <0.001),with R^(2) values of 0.86 and 0.69,respectively.The change of the phytoplankton SV was primarily related to the intracellular compo sition,which is controlled by nutrient conditions but did not significantly correlate with transparent extracellular polymer and biosilica contents.The results of this study help to understand the regulation of the vertical sinking process of diatoms by nutrient restriction and provide new insights into phytoplankton dynamics and their relationship with the marine nutrient structure.
基金supported by the National Key Research and Development Program of China (2022YFD2300304)the National Natural Science Foundation of China (32071944 and 32272197)+2 种基金the Hong Kong Research Grants Council, China (GRF 14177617, 12103219, 12103220, and AoE/M-403/16)the State Key Laboratory of Agrobiotechnology (Strategic Collaborative Projects) in The Chinese University of Hong Kong, China, the Six Talent Peaks Project in Jiangsu Province, China (SWYY151)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD).
文摘Integrative cultivation practices(ICPs)are essential for enhancing cereal yield and resource use efficiency.However,the effects of ICP on the rhizosphere environment and roots of paddy rice are still poorly understood.In this study,four rice varieties were produced in the field.Each variety was treated with six different cultivation techniques,including zero nitrogen application(0 N),local farmers’practice(LFP),nitrogen reduction(NR),and three progressive ICP techniques comprised of enhanced fertilizer N practice and increased plant density(ICP1),a treatment similar to ICP1 but with alternate wetting and moderate drying instead of continuous flooding(ICP2),and the same practices as ICP2 with the application of organic fertilizer(ICP3).The ICPs had greater grain production and nitrogen use efficiency than the other three methods.Root length,dry weight,root diameter,activity of root oxidation,root bleeding rate,zeatin and zeatin riboside compositions,and total organic acids in root exudates were elevated with the introduction of the successive cultivation practices.ICPs enhanced nitrate nitrogen,the activities of urease and invertase,and the diversity of microbes(bacteria)in rhizosphere and non-rhizosphere soil,while reducing the ammonium nitrogen content.The nutrient contents(ammonium nitrogen,total nitrogen,total potassium,total phosphorus,nitrate,and available phosphorus)and urease activity in rhizosphere soil were reduced in all treatments in comparison with the non-rhizosphere soil,but the invertase activity and bacterial diversity were greater.The main root morphology and physiology,and the ammonium nitrogen contents in rhizosphere soil at the primary stages were closely correlated with grain yield and internal nitrogen use efficiency.These findings suggest that the coordinated enhancement of the root system and the environment of the rhizosphere under integrative cultivation approaches may lead to higher rice production.
文摘Tobacco is an essential cash crop in Zimbabwe and a strategic livelihood option for hundreds of thousands of rural households. However, the crop is linked to negative environmental, economic, and social impacts. The existing studies on tobacco cultivation in Zimbabwe present contradictory findings on the determinants and impacts of adoption, leaving unanswered questions about the crop’s sustainability impact in the country. This article investigates the determinants of smallholder farmers’ decisions to grow tobacco and the associated impacts of adoption. Random and purposive sampling were used to select 273 household surveys, including tobacco and non-tobacco smallholder farmers, and 56 expert interviews to answer the research questions. We employed regression models alongside expert interviews and document analysis to identify the determinants influencing the decision-making process of smallholder farmers in Zimbabwe regarding tobacco cultivation. Additionally, our investigation aimed to elucidate the perceived impacts associated with the adoption of this agricultural practice. The regression analysis indicated that the farmer’s age, education level, farming experience, family size, household income, and perceived high farm profitability are significant drivers of tobacco adoption. We also discovered divergent and convergent perceptions of the critical impacts of tobacco cultivation. The study highlights the need for proactive multi-stakeholder collaboration and sustainable financial arrangements to address the negative impacts of tobacco production. As the primary stakeholder responsible for regulating and promoting agricultural activities, the Zimbabwean government should provide meaningful financial support, increase access to credit, and ensure better market facilities for alternative crops to reduce the over-dependence on tobacco.
基金The National Programme on Global Change and Air-Sea Interaction (PhaseⅡ)—Hypoxia and Acidification Monitoring and Warning Project in the CE under contract No.GASI-01-CJKthe Science Foundation of Donghai Laboratory under contract No.DH-2022KF0215+3 种基金the Oceanic Interdisciplinary Program of Shanghai Jiao Tong UniversityScientific Research Fund of the Second Institute of Oceanography,MNR under contract No.SL2022ZD207the National Key R&D Program of China under contract No.2021YFC3101702the Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE)Project under contract No.SZ2001。
文摘The sinking of phytoplankton is critical to organic matter transportation in the ocean and it is an essential process for the formation of coastal hypoxic zones.This study was based on a field investigation conducted during the summer of 2022 in the Changjiang River(Yangtze River) Estuary(CJE) and its adjacent waters.The settling column method was employed to measure the sinking velocity(SV) of different size fractions of phytoplankton at the surface of the sea and to analyze their environmental control mechanisms.The findings reveal significant spatial variation in phytoplankton SV(-0.55-2.41 m/d) within the CJE.High-speed sinking was predominantly observed in phosphate-depleted regions beyond the CJE front.At the same time,an upward trend was more commonly observed in the phosphate-rich regions near the CJE mouth.The SV ranges for different sizefractionated phytoplankton,including micro-(>20 μm),nano-(2-20 μm),and picophytoplankton(0.7-2 μm),were-0.50-4.74 m/d,-1.04-1.59 m/d,and-1.24-1.65 m/d,respectively.Correlation analysis revealed a significant negative correlation between SV and dissolved inorganic phosphorus(DIP),implying that the influence of DIP contributes to SV.The variations in phytoplankton alkaline phosphatase activity suggested a significant increase in SV across all size fractions in the event of phosphorus limitation.Phytoplankton communities with limited photo synthetic capacity(maximum photochemical efficience,Fv/Fm <0.3) were found to have higher SV than that of communities with strong capacity,suggesting a link between sinking and alterations in physiological conditions due to phosphate depletion.The findings from the in situ phosphate enrichment experiments confirmed a marked decrease in SV following phosphate supplementation.These findings suggest that phosphorus limitation is the primary driver of elevated SV in the CJE.This study enhances the comprehension of the potential mechanisms underlying hypoxic zone formation in the CJE,providing novel insights into how nearshore eutrophication influences organic carbon migration.
文摘Polycarbonate plastics containing bisphenol A (BPA) used to manufacture drinking water bottles. Kurdistan region in northern Iraq is a developed area with increased pollution from plastic bottles. Trace amounts of BPA have been detected in bottled water samples. The absorption of BPA was measured with HPLC using a vertical cultivation system with Bulbs of the Allium Cepa plant planted in these plastic bottles with monitored growth. Vertical cultivation was found to have a low level of BPA in the plant cells, making it a safe cultivation method under specific climate conditions. The mean concentration of BPA in vertical cultivation is 0.19 ug/ml (3.8 ng for a 20 uL injection), and the Limit of Quantification (LOQ) is 0.63 ug/ml (12.7 ng for 20 uL injection). While Scanning Electron Microscope (SEM) shows that the concentrations are relatively low in water samples stored at room temperature compared to those exposed to direct sunlight (40°C) and water bottle samples stored at (-4°C), The correlation coefficients were found to be good (0.9992). SEM is used for plastic bottle samples stored at different temperatures. The images identify compound decay and explore the morphology of BPA in manufactured plastic materials.
基金Supported by Key Scientific Research Project in Colleges and Universities of Henan Province(22B180011)Project of Henan Provincial Department of Science and Technology(232102320262)+1 种基金Education and Teaching Reform Research Project of Pingdingshan University(2021-JY55)Key Demonstration Course of Pingdingshan University in 2022——Comprehensive Experiment of Environmental Biology.
文摘The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation.
基金Supported by 2024 Major Facility System Operating Costs of Ministry of Agriculture and Rural Affairs"Ledong Cashew Germplasm Resource Nursery Operating Cost of Ministry of Agriculture and Rural Affairs"2023-2024 Agricultural Germplasm Resource Conservation Project"Research on Collection,Conservation and Utilization of Cashew Germplasm Resources".
文摘In order to enhance the yield and quality of cashew,it is essential to implement high-yield cultivation techniques effectively throughout the production process.Additionally,pest control measures should be employed to provide technical support for the industrialized development of cashew.
基金financially supported by the National Key Research & Development Program of China (Grant No.2022YFD1500402)the National Natural Science Foundation of China (Grant No.51809225)+1 种基金the China Postdoctoral Science Foundation (Grant Nos.2020T130559 and 2019M651977)the Natural Science Foundation of Jiangsu Province, China (Grant No.BK20180929)。
文摘Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages, the system does have its drawbacks, such as soil organic matter reduction and microplastic pollution, which impede the widespread adoption of film mulching cultivation in China. Nonetheless, the advent of degradable film, controlled-release fertilizer, organic fertilizer, and film mulching machinery is promoting the development of rice film mulching cultivation. This review outlines the impact of rice cultivation under film mulching on soil moisture, soil temperature, soil fertility, greenhouse gas emissions, weed control, and disease and pest management. It also elucidates the mechanism of changes in rice growth, yield and quality, water use efficiency, and nitrogen use efficiency. This paper incorporates a review of published research articles and discusses some uncertainties and shortcomings associated with rice cultivation under film mulching. Consequently, prospective research directions for the technology of rice film mulching cultivation are outlined, and recommendations for future research into rice cultivation under film mulching are proposed.
基金partially supported by the US National Science Foundation(1903722,1243232)。
文摘Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.
基金Supported by National Key Research and Development Program of China,No.2022YFE0209900.
文摘Familial hypercholesterolemia(FH)is characterized by elevated low-density lipoprotein cholesterol levels due to genetic mutations,presenting with xanthomas,corneal arch,and severe cardiovascular diseases.Early identification,diagnosis,and treatment are crucial to prevent severe complications like acute myocardial infarction.Statins are the primary treatment,supplemented by Ezetimibe and proprotein convertase subtilisin/kexin type 9 inhibitors,though their effectiveness can be limited in severe cases.Over 90%of FH cases remain undiagnosed,and current treatments are often inadequate,underscoring the need for improved diagnostic and management systems.Future strategies include advancements in gene testing,precision medicine,and novel drugs,along with gene therapy approaches like AAV-mediated gene therapy and clustered regularly interspaced short palindromic repeats.Lifestyle modifications,including health education,dietary control,and regular exercise,are essential for managing FH and preventing related diseases.Research into FH-related gene mutations,especially LDLR,is critical for accurate diagnosis and effective treatment.
文摘Agrochemicals are contemporary, omnipresent tool used in vegetable cultivation. Farmers’ knowledge and awareness of the proper usage of agrochemicals are critical for mitigating the negative effects on human health. This cross-sectional study was aimed at assessing the usage knowledge, risk awareness of toxicological and chemical classes, proper handling and use practices for agrochemicals homologated for use in vegetable farming, and the occurrence of health-related symptoms as a result of exposure among these farmers. The study included 93 vegetable growers from agricultural hotspot towns in Fako, southwest Cameroon. The field study, ran from November 2021 to December 2023, using a questionnaire to collect information on farmers demographic, and their knowledge of pesticide classes, and the related risk of associated with the handling of agrochemicals. Results show that all vegetable farmers, particularly those engaged in agribusiness, employ pesticide inputs to maximize production. Six pesticides, two fertilizer types, and one unknown substance were identified. While 23 active compounds were found, the most utilized were abamectin, emamectin (10.46%), dimethoate (9.30%,) and ethoprophos (8.13%). Two active chemicals, dimethoate and methalaxyl, are illegal yet remain in circulation. Toxicological classes I and II, with the greatest harmful effect on human health, were the most commonly utilized (64.27%). Thirty-nine percent of farmers never use personal protection equipment when working with agrochemicals, demonstrating a significant gap in knowledge and awareness of agrochemicals and their various applications and handling procedures in the field. The government should implement an intensive specialized educational program for on-field farmers with incentives in order to promote sustainable agriculture methods that ensure environmental and human safety.
文摘BACKGROUND Pulse oximetry has become a cornerstone technology in healthcare,providing non-invasive monitoring of oxygen saturation levels and pulse rate.Despite its widespread use,the technology has inherent limitations and challenges that must be addressed to ensure accurate and reliable patient care.AIM To comprehensively evaluate the advantages,limitations,and challenges of pulse oximetry in clinical practice,as well as to propose recommendations for optimizing its use.METHODS A systematic literature review was conducted to identify studies related to pulse oximetry and its applications in various clinical settings.Relevant articles were selected based on predefined inclusion and exclusion criteria,and data were synthesized to provide a comprehensive overview of the topic.RESULTS Pulse oximetry offers numerous advantages,including non-invasiveness,real-time feedback,portability,and costeffectiveness.However,several limitations and challenges were identified,including motion artifacts,poor peripheral perfusion,ambient light interference,and patient-specific factors such as skin pigmentation and hemoglobin variants.Recommendations for optimizing pulse oximetry use include technological advancements,education and training initiatives,quality assurance protocols,and interdisciplinary collaboration.CONCLUSION Pulse oximetry is crucial in modern healthcare,offering invaluable insights into patients’oxygenation status.Despite its limitations,pulse oximetry remains an indispensable tool for monitoring patients in diverse clinical settings.By implementing the recommendations outlined in this review,healthcare providers can enhance the effectiveness,accessibility,and safety of pulse oximetry monitoring,ultimately improving patient outcomes and quality of care.
基金Heilongjiang Higher Education Society for Higher Education Research Project“Research on the Core Cultivation of Aesthetics among Art Students under the Background of the New Era”(23GJYBJ042)。
文摘Through understanding the history and current situation of aesthetic education in China,this paper explains some misunderstandings in the aesthetics of contemporary university art students,such as the insufficiency of aesthetic value and ability,as well as the inadequacy of students’creativity due to traditional art education.It is also pointed out that the cultivation of core literacy of art students is a multidimensional and comprehensive process,and these problems need to be solved by schools,teachers,and students,so as to strengthen the inner aesthetic education of students and improve their aesthetic awareness and ability.Aesthetic education is not only an important part of the art classroom but also a key part of fostering students’all-round development and enhancing their humanistic literacy.It is necessary to cultivate students’observation,imagination,image-thinking ability,and creativity,so that they can become artistic talents with independent thinking and innovation.
基金Yunnan Provincial Department of Education Scientific Research Fund Project“Construction and Development of‘Loose-Leaf’Teaching Material Resources for Landscape Engineering Vocational Education”(Project number:2022J1725)。
文摘Due to industry characteristics or regional limitations,many students in certain majors tend to seek employment in small and medium-sized enterprises(SMEs).SMEs face certain challenges in implementing industry-education integration,and there is a lack of mature methods in specific implementation processes and talent cultivation plan generation.Taking the landscape architecture profession as an example,this paper conducts a correlation analysis and cross-analysis of the industry-required professional skills based on surveys of over 300 industry practitioners employed in SMEs.It provides professional skill cultivation modules based on market feedback.This research process and analysis method have certain reference significance for the rapid production of adaptive talent cultivation professional skill modules in other industries targeting SMEs.
基金National First-Class Undergraduate Course“Etiquette and Cultural Cultivation”Course Construction(2023210576)。
文摘Taking Communication University of Zhejiang as an example,this paper summarizes the overview of the“Etiquette and Cultural Cultivation”course and analyzes the problems existing in the teaching of the course.It also explores the ideas and practical strategies of the teaching reform of the course and sums up the innovative results achieved,to provide a reference for relevant teachers.
基金2022 Hunan Provincial General Higher Education School Teaching Reform Research Key Project“Research and Practice of Innovative Art Talent Cultivation Mode in Local Comprehensive Colleges and Universities Under the Strategy of‘Three Highs and Four New’”(Project number:HNJG-2022-0108)。
文摘As an important link in the development of modern quality education,art education is one of the methods to guide students to have a diversified vision.Under the background of multiculturalism,we need to explore the connotation and value of art education with the concept of“three highs and four new,”so that students can realize interdisciplinary and cross-cultural cognition through an immersive experience and practical operation in a wide range of multicultural situations,and to develop the knowledge of art education with the concept of“three highs and four new.”Based on the multicultural background,this paper focuses on the integration of multiculturalism into the reform practice of“student-centered”in colleges and universities,so as to cultivate art talents adapted to the multicultural background,in order to achieve the great mission of“three highs and four new”and better lead the innovative development of art education in colleges and universities.
文摘With the release of China Education Modernization 2035,education modernization has become a national strategic goal.In this context,Chongqing Energy Vocational College is actively exploring the“four integration and four innovation”specialized and creative integration talent cultivation mode,aiming at cultivating high-quality talents with innovative spirit and practical skills.This paper analyzes the status quo and challenges of talent cultivation in higher vocational education,puts forward the main practices of innovation-driven,creation and research,cross-border integration,and innovative practice,and has achieved remarkable results.Additionally,it summarizes the experience revelation and provides a reference for other higher vocational colleges and universities.