The water dissociation mechanism on a bipolar membrane under the electrical field was investigated and characterized in terms of ionic transport and limiting current density. It is considered that the depletion layer ...The water dissociation mechanism on a bipolar membrane under the electrical field was investigated and characterized in terms of ionic transport and limiting current density. It is considered that the depletion layer exists at the junction of a bipolar membrane, which is coincided with the viewpoint of the most literatures, but we also consider that the thickness and conductivity of this layer is not only related with the increase of the applied voltage but also with the limiting current density. Below the limiting current density, the thickness of the depletion layer keeps a constant and the conductivity decreases with the increase of the applied voltage; while above the limiting current density, the depletion thickness will increase with the increase of the applied voltage and the conductivity keeps a very low constant. Based on the data reported in the literatures and independent determinations, the limiting current density was calculated and the experimental curves Ⅰ-Ⅴ in the two directions were com展开更多
Density limits with different fuelling methods have been compared in HL-2A, i.e. direct gas puffing and supersonic molecular beam injection (SMBI) from outer midplane, and divertor gas fuelling. The maximum densitie...Density limits with different fuelling methods have been compared in HL-2A, i.e. direct gas puffing and supersonic molecular beam injection (SMBI) from outer midplane, and divertor gas fuelling. The maximum densities for low current discharges are 3.4×10^19 m-3, 4.3×10^19 m-3 and 4.7×10^19 m-3 for the 3 kinds of fuelling methods. The corresponding density ratios to Green- wald density limit are 0.9, 1.1, 1.2, respectively. The behavior of density limit disruption is analyzed as well.展开更多
Investigations on density limit have been performed under a variety of discharge conditions on HL-1M, which include hydrogen isotope, siliconlzed wall coating and a variety of fuelling methods (gas puff, pellet and su...Investigations on density limit have been performed under a variety of discharge conditions on HL-1M, which include hydrogen isotope, siliconlzed wall coating and a variety of fuelling methods (gas puff, pellet and supersonic molecular beam (SMB) injection). Detailed analysis shows that the HL-1M density limit is a disruptive limit and related to first wall recirculating and fuelling methods. The destruction of the balance between radiation and input power is the main reason for the density disruption.展开更多
A new compact torus injector(KTX-CTI)has been built for injection experiments on the Keda Torus eXperiment(KTX)reversed field pinch(RFP).The aim is to study the fundamental physics governing the compact torus(CT)centr...A new compact torus injector(KTX-CTI)has been built for injection experiments on the Keda Torus eXperiment(KTX)reversed field pinch(RFP).The aim is to study the fundamental physics governing the compact torus(CT)central fueling processes.In experiments conducted under the sole influence of a 0.1 T toroidal magnetic field,the injected CT successfully penetrated the entire toroidal magnetic field,reaching the inner wall of the KTX vacuum vessel.Upon reaching the inner wall,the CT diffused both radially outward and toroidally within the vessel at a discernible diffusion speed.Moreover,the inherent helicity within the CT induced a modest KTX plasma current of 200 A,consistent with predictions based on helicity conservation.CT injection demonstrated the capability to initiate KTX discharges at low loop voltages,suggesting its potential as a pre-ionization and current startup technique.During RFP discharges featuring CT injection,the central plasma density was found to exceed the Greenwald density limit,with more peaked density profiles,indicating the predominant confinement of CT plasma within the core region of the KTX bulk plasma.展开更多
Density limit has long been a widely studied issue influencing the operating range of tokamaks.The rapid growth of the m/n=2/1(where m and n are poloidal and toroidal mode numbers,respectively)tearing mode is generall...Density limit has long been a widely studied issue influencing the operating range of tokamaks.The rapid growth of the m/n=2/1(where m and n are poloidal and toroidal mode numbers,respectively)tearing mode is generally regarded as a primary precursor to the density limit disruption.In this experiment,the coupling of the m/n=1/1 mode and the m/n=2/1 mode in highdensity plasma was observed.During a sawtooth cycle,the frequencies of the two modes gradually converge until they become equal.After that,toroidal coupling occurs between the 1/1 and 2/1 modes,resulting in a mutually fixed phase relationship.With the occurrence of toroidal coupling,the 2/1 mode is stabilized.Prior to the disruption,the cessation of the 1/1 and 2/1 mode coupling,along with the rapid growth in the amplitude of the 2/1 mode,can be observed.Additionally,under the same parameters,comparing discharges with or without the 1/1 mode,it is found that the presence of the 1/1 mode leads to higher plasma density and temperature parameters.展开更多
Atterberg limits and consistency indices are used for classifications of cohesive(fine-grained) soils in relation with compaction and tillage practices. They also provide information for interpreting several soil mech...Atterberg limits and consistency indices are used for classifications of cohesive(fine-grained) soils in relation with compaction and tillage practices. They also provide information for interpreting several soil mechanical and physical properties such as shear strength, compressibility, shrinkage and swelling potentials. Although, several studies have been conducted regarding the land use effects on various soil mechanical properties, little is known about the effects of land use and slope positions on Atterberg limits and consistency indices. This study was conducted to investigate the effects of land use and slope position on selected soil physical and chemical properties, Atterberg limits and consistency indices in hilly region of western Iran. Three land uses including dryland farming, irrigated farming and pasture and four slope positions(i.e., shoulder, backslope, footslope, and toeslope) were used for soil samplings. One hundred eleven soil samples were collected from the surface soil(0-10 cm). Selected physical and chemical properties, liquid limit(LL), plastic limit(PL) and shrinkage limit(SL) were measured using the standard methods; and consistency indices including plastic index(PI), friability index(FI), shrinkage index(SI) and soil activity(A=PI/clay) were calculated. The results showed that irrigated farming significantly increased organic matter content(OM) and OM/clay ratio, and decreased bulk density(ρb) and relative bulk density(ρb-rel) as a result of higher biomass production and plant residues added to the soil compared to other land uses. Except for sand content, OM, ρb, cation exchange capacity(CEC) and calcium carbonate equivalent(CCE), slope position significantly affected soil physical and chemical properties. The highest values of silt, OM/clay and CEC/clay were found in the toeslope position, predominantly induced by soil redistribution within the landscape. The use of complexed(COC)- noncomplexed organic carbon(NCOC) concept indicated that majority of the studied soils were located below the saturation line and the OM in the soils was mainly in the COC form. The LL, PI, FI and A showed significant differences among the land uses; the highest values belonged to the irrigated farming due to high biomass production and plant residues returned to the soils. Furthermore, slope position significantly affected the Atterberg limits and consistency indices except for SL. The highest values of LL, PI, SI and A were observed in the toeslope position probably because of higher OM and CEC/clay due to greater amount of expandable phyllosilicate clays. Overall, soils on the toeslope under irrigated farming with high LL and SI and low values of FI need careful tillage management to avoid soil compaction.展开更多
Previous studies in different ethnic groups show changes in heart rate, respiratory rate, cortisol cycle, and sleep-wake cycle throughout life. Our purpose is to verify such changes by comparing the values of each var...Previous studies in different ethnic groups show changes in heart rate, respiratory rate, cortisol cycle, and sleep-wake cycle throughout life. Our purpose is to verify such changes by comparing the values of each variable before and after puberty. Puberty is associated with the end of growth and is an important point in our theoretical framework: when growth ends, changes occur in the geometry of the biological system. At the same time, this causes phase changes in the oscillatory variables, which are seen as chronodisruption. The results confirm the changes found by other authors in the evolution of the variables throughout life. Then, we can conclude that the variables studied present phase changes when growth ends, in accordance with the proposed theoretical framework.展开更多
When the major disruption occurs, it can not only generate great heat loads on the first wall and divertor plates, but also leads to the large electromagnetic force because of the halo current. This large electromagne...When the major disruption occurs, it can not only generate great heat loads on the first wall and divertor plates, but also leads to the large electromagnetic force because of the halo current. This large electromagnetic force is very dangerous to the invessel components of the divertor and vacuum vessel. Therefore, how to avoid the disruption is an important issue on tokamak operation. To control and mitigate the major disruptions, the mechanism and the characters of the disruption have to be well understood.展开更多
The sputtering of impurities is caused by the interactions between plasma and the first wall, and the recycling of the gas affects the particle and energy transport of plasmas with a complicated mechanism in plasma op...The sputtering of impurities is caused by the interactions between plasma and the first wall, and the recycling of the gas affects the particle and energy transport of plasmas with a complicated mechanism in plasma operation. It is important for present tokarnaks to achieve a good confinement and high performance plasmas by means of controls of the vacuum condition, usage of low Z materials, control of the recycling of neutral particles and suppressions of the appearances and yield of impurities. For higher plasma parameters, some of the first wall of HL-2A is covered with graphite materials and carbon fiber tiles. Hence the studies on the in-situ coating application and development, and the interactions between the coating film and plasma are needed to effectively control the impurity, improve plasma confinement and achieve high performance plasma.展开更多
Kerov[16,17] proved that Wigner's semi-circular law in Gauss[an unitary ensembles is the transition distribution of the omega curve discovered by Vershik and Kerov[34] for the limit shape of random partitions under t...Kerov[16,17] proved that Wigner's semi-circular law in Gauss[an unitary ensembles is the transition distribution of the omega curve discovered by Vershik and Kerov[34] for the limit shape of random partitions under the Plancherel measure. This establishes a close link between random Plancherel partitions and Gauss[an unitary ensembles, In this paper we aim to consider a general problem, namely, to characterize the transition distribution of the limit shape of random Young diagrams under Poissonized Plancherel measures in a periodic potential, which naturally arises in Nekrasov's partition functions and is further studied by Nekrasov and Okounkov[25] and Okounkov[28,29]. We also find an associated matrix mode[ for this transition distribution. Our argument is based on a purely geometric analysis on the relation between matrix models and SeibergWitten differentials.展开更多
基金National Natural Science Foundation of China(29976040),Natural Science Foundation of AnhuiProvince(99045431),Foundation of Environments and Resources of USTC and Youth Foundation of USTC.
文摘The water dissociation mechanism on a bipolar membrane under the electrical field was investigated and characterized in terms of ionic transport and limiting current density. It is considered that the depletion layer exists at the junction of a bipolar membrane, which is coincided with the viewpoint of the most literatures, but we also consider that the thickness and conductivity of this layer is not only related with the increase of the applied voltage but also with the limiting current density. Below the limiting current density, the thickness of the depletion layer keeps a constant and the conductivity decreases with the increase of the applied voltage; while above the limiting current density, the depletion thickness will increase with the increase of the applied voltage and the conductivity keeps a very low constant. Based on the data reported in the literatures and independent determinations, the limiting current density was calculated and the experimental curves Ⅰ-Ⅴ in the two directions were com
基金National Natural Science Foundation of China (Nos.10675041,10775044)the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘Density limits with different fuelling methods have been compared in HL-2A, i.e. direct gas puffing and supersonic molecular beam injection (SMBI) from outer midplane, and divertor gas fuelling. The maximum densities for low current discharges are 3.4×10^19 m-3, 4.3×10^19 m-3 and 4.7×10^19 m-3 for the 3 kinds of fuelling methods. The corresponding density ratios to Green- wald density limit are 0.9, 1.1, 1.2, respectively. The behavior of density limit disruption is analyzed as well.
文摘Investigations on density limit have been performed under a variety of discharge conditions on HL-1M, which include hydrogen isotope, siliconlzed wall coating and a variety of fuelling methods (gas puff, pellet and supersonic molecular beam (SMB) injection). Detailed analysis shows that the HL-1M density limit is a disruptive limit and related to first wall recirculating and fuelling methods. The destruction of the balance between radiation and input power is the main reason for the density disruption.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03100000 and 2017YFE0301701)National Natural Science Foundation of China(Nos.12375226,11875255,11635008,11375188 and 11975231)the Fundamental Research Funds for the Central Universities(No.wk34200000022)。
文摘A new compact torus injector(KTX-CTI)has been built for injection experiments on the Keda Torus eXperiment(KTX)reversed field pinch(RFP).The aim is to study the fundamental physics governing the compact torus(CT)central fueling processes.In experiments conducted under the sole influence of a 0.1 T toroidal magnetic field,the injected CT successfully penetrated the entire toroidal magnetic field,reaching the inner wall of the KTX vacuum vessel.Upon reaching the inner wall,the CT diffused both radially outward and toroidally within the vessel at a discernible diffusion speed.Moreover,the inherent helicity within the CT induced a modest KTX plasma current of 200 A,consistent with predictions based on helicity conservation.CT injection demonstrated the capability to initiate KTX discharges at low loop voltages,suggesting its potential as a pre-ionization and current startup technique.During RFP discharges featuring CT injection,the central plasma density was found to exceed the Greenwald density limit,with more peaked density profiles,indicating the predominant confinement of CT plasma within the core region of the KTX bulk plasma.
基金supported by National Natural Science Foundation of China(Nos.12175227 and 51821005)the Fundamental Research Funds for the Central Universities(No.USTC 20210079)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP022)。
文摘Density limit has long been a widely studied issue influencing the operating range of tokamaks.The rapid growth of the m/n=2/1(where m and n are poloidal and toroidal mode numbers,respectively)tearing mode is generally regarded as a primary precursor to the density limit disruption.In this experiment,the coupling of the m/n=1/1 mode and the m/n=2/1 mode in highdensity plasma was observed.During a sawtooth cycle,the frequencies of the two modes gradually converge until they become equal.After that,toroidal coupling occurs between the 1/1 and 2/1 modes,resulting in a mutually fixed phase relationship.With the occurrence of toroidal coupling,the 2/1 mode is stabilized.Prior to the disruption,the cessation of the 1/1 and 2/1 mode coupling,along with the rapid growth in the amplitude of the 2/1 mode,can be observed.Additionally,under the same parameters,comparing discharges with or without the 1/1 mode,it is found that the presence of the 1/1 mode leads to higher plasma density and temperature parameters.
基金Isfahan University of Technology for the financial support of this study
文摘Atterberg limits and consistency indices are used for classifications of cohesive(fine-grained) soils in relation with compaction and tillage practices. They also provide information for interpreting several soil mechanical and physical properties such as shear strength, compressibility, shrinkage and swelling potentials. Although, several studies have been conducted regarding the land use effects on various soil mechanical properties, little is known about the effects of land use and slope positions on Atterberg limits and consistency indices. This study was conducted to investigate the effects of land use and slope position on selected soil physical and chemical properties, Atterberg limits and consistency indices in hilly region of western Iran. Three land uses including dryland farming, irrigated farming and pasture and four slope positions(i.e., shoulder, backslope, footslope, and toeslope) were used for soil samplings. One hundred eleven soil samples were collected from the surface soil(0-10 cm). Selected physical and chemical properties, liquid limit(LL), plastic limit(PL) and shrinkage limit(SL) were measured using the standard methods; and consistency indices including plastic index(PI), friability index(FI), shrinkage index(SI) and soil activity(A=PI/clay) were calculated. The results showed that irrigated farming significantly increased organic matter content(OM) and OM/clay ratio, and decreased bulk density(ρb) and relative bulk density(ρb-rel) as a result of higher biomass production and plant residues added to the soil compared to other land uses. Except for sand content, OM, ρb, cation exchange capacity(CEC) and calcium carbonate equivalent(CCE), slope position significantly affected soil physical and chemical properties. The highest values of silt, OM/clay and CEC/clay were found in the toeslope position, predominantly induced by soil redistribution within the landscape. The use of complexed(COC)- noncomplexed organic carbon(NCOC) concept indicated that majority of the studied soils were located below the saturation line and the OM in the soils was mainly in the COC form. The LL, PI, FI and A showed significant differences among the land uses; the highest values belonged to the irrigated farming due to high biomass production and plant residues returned to the soils. Furthermore, slope position significantly affected the Atterberg limits and consistency indices except for SL. The highest values of LL, PI, SI and A were observed in the toeslope position probably because of higher OM and CEC/clay due to greater amount of expandable phyllosilicate clays. Overall, soils on the toeslope under irrigated farming with high LL and SI and low values of FI need careful tillage management to avoid soil compaction.
文摘Previous studies in different ethnic groups show changes in heart rate, respiratory rate, cortisol cycle, and sleep-wake cycle throughout life. Our purpose is to verify such changes by comparing the values of each variable before and after puberty. Puberty is associated with the end of growth and is an important point in our theoretical framework: when growth ends, changes occur in the geometry of the biological system. At the same time, this causes phase changes in the oscillatory variables, which are seen as chronodisruption. The results confirm the changes found by other authors in the evolution of the variables throughout life. Then, we can conclude that the variables studied present phase changes when growth ends, in accordance with the proposed theoretical framework.
文摘When the major disruption occurs, it can not only generate great heat loads on the first wall and divertor plates, but also leads to the large electromagnetic force because of the halo current. This large electromagnetic force is very dangerous to the invessel components of the divertor and vacuum vessel. Therefore, how to avoid the disruption is an important issue on tokamak operation. To control and mitigate the major disruptions, the mechanism and the characters of the disruption have to be well understood.
文摘The sputtering of impurities is caused by the interactions between plasma and the first wall, and the recycling of the gas affects the particle and energy transport of plasmas with a complicated mechanism in plasma operation. It is important for present tokarnaks to achieve a good confinement and high performance plasmas by means of controls of the vacuum condition, usage of low Z materials, control of the recycling of neutral particles and suppressions of the appearances and yield of impurities. For higher plasma parameters, some of the first wall of HL-2A is covered with graphite materials and carbon fiber tiles. Hence the studies on the in-situ coating application and development, and the interactions between the coating film and plasma are needed to effectively control the impurity, improve plasma confinement and achieve high performance plasma.
基金Supported by the National Natural Science Foundation of China(No.10671176)
文摘Kerov[16,17] proved that Wigner's semi-circular law in Gauss[an unitary ensembles is the transition distribution of the omega curve discovered by Vershik and Kerov[34] for the limit shape of random partitions under the Plancherel measure. This establishes a close link between random Plancherel partitions and Gauss[an unitary ensembles, In this paper we aim to consider a general problem, namely, to characterize the transition distribution of the limit shape of random Young diagrams under Poissonized Plancherel measures in a periodic potential, which naturally arises in Nekrasov's partition functions and is further studied by Nekrasov and Okounkov[25] and Okounkov[28,29]. We also find an associated matrix mode[ for this transition distribution. Our argument is based on a purely geometric analysis on the relation between matrix models and SeibergWitten differentials.