The overcurrent (OC) protection limit is set usually accorging to a OC protection setting table on digital integrated protection equipment in mine explode isolation high voltage (HV) vacuum switch. For digital integra...The overcurrent (OC) protection limit is set usually accorging to a OC protection setting table on digital integrated protection equipment in mine explode isolation high voltage (HV) vacuum switch. For digital integrated protection equipment, OC protection setting table must be converted to be a microcomputer algorithm. This paper first intro-duced a method of the fitting OC protection setting table to be OC relay inverse time characteristics equations using MATLAB least square fitting. On the basis of analyzing these fitting equations, a notion, “integral limit rate” was put forward initially and a OC in-verse time digital algorithm was developed. MATLAB simulation results and a digital signal processor (DSP) based digital integrated protection equipment running test indicate that this algorithm has less calculation amount, less taking up memory, high control accuracy, implements the no-grade setting of OC delay values, suits for all kinds of low-middle mi-crocomputer system implementation.展开更多
The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an...The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an analylical upper-bound solution todrawing stress through idling rolls has been obtained in this paper.展开更多
A kinematically admissible velocity field which is different from Avitzur's is established in Cartesian Coordinates. An upper-bound analytical solution to strip drawing andextrusion is obtained by using the integr...A kinematically admissible velocity field which is different from Avitzur's is established in Cartesian Coordinates. An upper-bound analytical solution to strip drawing andextrusion is obtained by using the integral as a function of the upper limit in this paper.展开更多
In the calculation of the collision probability between space objects, the assumption of linear relative motion is generally adopted to simplify the problem because most encounters are at high relative velocity. Never...In the calculation of the collision probability between space objects, the assumption of linear relative motion is generally adopted to simplify the problem because most encounters are at high relative velocity. Nevertheless, the assumption is no longer valid for encounters at extremely low velocities, and a new algorithm is urgently needed for computing collision probability for space objects having nonlinear relative motion. In this particular case, the direction associated with relative velocity is reintroduced for integration. The different integral limits would lead to the variations of probability and integral time. Moreover, the application scope of this new algorithm is also presented. Since the nonlinear effect is only significant in some certain situations, the new algorithm needs to be considered only in such certain situations. More specifically, when space objects in circular orbits encounter with a tiny inclined angle (the extreme situation), the new algorithm can derive much more accurate collision probability than the linear method, that is to say, the linearity assumption involved in general collision probability formulation is not adequate anymore. In addition, the deviation of the probability derived by the linear method (linear collision probability) from that derived by the nonlinear method (nonlinear collision probability) also weakly depends on the relative distance and combined covariance, and essentially depends on their ratio.展开更多
The existence and uniqueness of limit cycle for the E 1 3 type of cubic systems with two integral straight lines has been studied in this paper. It is found that the system has no limit cycle when the two int...The existence and uniqueness of limit cycle for the E 1 3 type of cubic systems with two integral straight lines has been studied in this paper. It is found that the system has no limit cycle when the two integral straight lines intersect each other; it has a unique limit cycle when the two integral straight lines are paralleled. The sufficient and necessary conditions are also given to guarantee the existence of the unique limit cycle.展开更多
文摘The overcurrent (OC) protection limit is set usually accorging to a OC protection setting table on digital integrated protection equipment in mine explode isolation high voltage (HV) vacuum switch. For digital integrated protection equipment, OC protection setting table must be converted to be a microcomputer algorithm. This paper first intro-duced a method of the fitting OC protection setting table to be OC relay inverse time characteristics equations using MATLAB least square fitting. On the basis of analyzing these fitting equations, a notion, “integral limit rate” was put forward initially and a OC in-verse time digital algorithm was developed. MATLAB simulation results and a digital signal processor (DSP) based digital integrated protection equipment running test indicate that this algorithm has less calculation amount, less taking up memory, high control accuracy, implements the no-grade setting of OC delay values, suits for all kinds of low-middle mi-crocomputer system implementation.
文摘The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an analylical upper-bound solution todrawing stress through idling rolls has been obtained in this paper.
文摘A kinematically admissible velocity field which is different from Avitzur's is established in Cartesian Coordinates. An upper-bound analytical solution to strip drawing andextrusion is obtained by using the integral as a function of the upper limit in this paper.
基金supported by the National Natural Science Foundation of China (Grant No. 11203085)
文摘In the calculation of the collision probability between space objects, the assumption of linear relative motion is generally adopted to simplify the problem because most encounters are at high relative velocity. Nevertheless, the assumption is no longer valid for encounters at extremely low velocities, and a new algorithm is urgently needed for computing collision probability for space objects having nonlinear relative motion. In this particular case, the direction associated with relative velocity is reintroduced for integration. The different integral limits would lead to the variations of probability and integral time. Moreover, the application scope of this new algorithm is also presented. Since the nonlinear effect is only significant in some certain situations, the new algorithm needs to be considered only in such certain situations. More specifically, when space objects in circular orbits encounter with a tiny inclined angle (the extreme situation), the new algorithm can derive much more accurate collision probability than the linear method, that is to say, the linearity assumption involved in general collision probability formulation is not adequate anymore. In addition, the deviation of the probability derived by the linear method (linear collision probability) from that derived by the nonlinear method (nonlinear collision probability) also weakly depends on the relative distance and combined covariance, and essentially depends on their ratio.
文摘The existence and uniqueness of limit cycle for the E 1 3 type of cubic systems with two integral straight lines has been studied in this paper. It is found that the system has no limit cycle when the two integral straight lines intersect each other; it has a unique limit cycle when the two integral straight lines are paralleled. The sufficient and necessary conditions are also given to guarantee the existence of the unique limit cycle.