The liner of a CNG pressure vessel is manufactured by a DDI(deep drawing and ironing)process for the cylinder part,which is a continuous process that includes a drawing process to reduce the diameter of the billet and...The liner of a CNG pressure vessel is manufactured by a DDI(deep drawing and ironing)process for the cylinder part,which is a continuous process that includes a drawing process to reduce the diameter of the billet and a subsequent ironing process to reduce the thickness of the billet.A tractrix die used in the 1^(st) deep drawing allows the blank to flow smoothly by decreasing the punch load and radial tensile stress occurring in the workpiece.It also increases the draw ratio compared to conventional dies,but it causes forming defects.In this study,a shape coefficient(S_(c))is proposed for the tractrix die using the blank diameter(D_(0)),inflow diameter of the workpiece(d_(i)),and inflow angle of the workpiece(θ)for design of the tractrix die.The effects of the thickness and inflow angle of the workpiece on wrinkling and folding were investigated through FEA.Also,a discriminant is proposed for the relative radial stress(σ)generated during the deep drawing process using the tractirx die and used to predict fracture.Based on the results,the blank thickness,the draw ratio,and the inflow of the workpiece angle in the 1^(st) deep drawing process are suggested,and the number of operations in the DDI process was reduced from 6 to 4.This improves the productivity and reduces the manufacturing cost.展开更多
The formability of aluminum alloy AA7075 at elevated temperature was investigated through experiment. Stress-strain relationship at different temperatures and forming speeds were investigated through tensile testing. ...The formability of aluminum alloy AA7075 at elevated temperature was investigated through experiment. Stress-strain relationship at different temperatures and forming speeds were investigated through tensile testing. Deep drawing and stretch formability were also tested through limiting drawing ratio (LDR) and limiting dome height (LDH) tests. Finally, post forming mechanical property testing was conducted to investigate the effects of exposure to warm forming temperatures on the mechanical properties. Results show that deep drawing and stretch formability of AA7075 can be significantly improved when the blank is heated to 140-220 °C. At temperature over 260 °C, formability and post forming mechanical properties begin to decrease due to the effect of the heating and forming processes on the material's temper.展开更多
基金Supported by a 2-Year Research Grant of Pusan National University,Korea。
文摘The liner of a CNG pressure vessel is manufactured by a DDI(deep drawing and ironing)process for the cylinder part,which is a continuous process that includes a drawing process to reduce the diameter of the billet and a subsequent ironing process to reduce the thickness of the billet.A tractrix die used in the 1^(st) deep drawing allows the blank to flow smoothly by decreasing the punch load and radial tensile stress occurring in the workpiece.It also increases the draw ratio compared to conventional dies,but it causes forming defects.In this study,a shape coefficient(S_(c))is proposed for the tractrix die using the blank diameter(D_(0)),inflow diameter of the workpiece(d_(i)),and inflow angle of the workpiece(θ)for design of the tractrix die.The effects of the thickness and inflow angle of the workpiece on wrinkling and folding were investigated through FEA.Also,a discriminant is proposed for the relative radial stress(σ)generated during the deep drawing process using the tractirx die and used to predict fracture.Based on the results,the blank thickness,the draw ratio,and the inflow of the workpiece angle in the 1^(st) deep drawing process are suggested,and the number of operations in the DDI process was reduced from 6 to 4.This improves the productivity and reduces the manufacturing cost.
文摘The formability of aluminum alloy AA7075 at elevated temperature was investigated through experiment. Stress-strain relationship at different temperatures and forming speeds were investigated through tensile testing. Deep drawing and stretch formability were also tested through limiting drawing ratio (LDR) and limiting dome height (LDH) tests. Finally, post forming mechanical property testing was conducted to investigate the effects of exposure to warm forming temperatures on the mechanical properties. Results show that deep drawing and stretch formability of AA7075 can be significantly improved when the blank is heated to 140-220 °C. At temperature over 260 °C, formability and post forming mechanical properties begin to decrease due to the effect of the heating and forming processes on the material's temper.