This paper is concerned with the blow-up solutions of the Cauchy problem for Gross-Pitaevskii equation.In terms of Merle and Raphёel's arguments as well as Carles' transformation,the limiting profiles of blow-up so...This paper is concerned with the blow-up solutions of the Cauchy problem for Gross-Pitaevskii equation.In terms of Merle and Raphёel's arguments as well as Carles' transformation,the limiting profiles of blow-up solutions are obtained.In addition,the nonexistence of a strong limit at the blow-up time and the existence of L2 profile outside the blow-up point for the blow-up solutions are obtained.展开更多
We study the blow-up solutions for the Davey-Stewartson system(D-S system, for short)in L2x(R2). First, we give the nonlinear profile decomposition of solutions for the D-S system. Then, we prove the existence of ...We study the blow-up solutions for the Davey-Stewartson system(D-S system, for short)in L2x(R2). First, we give the nonlinear profile decomposition of solutions for the D-S system. Then, we prove the existence of minimal mass blow-up solutions. Finally, by using the characteristic of minimal mass blow-up solutions, we obtain the limiting profile and a precisely mass concentration of L2 blow-up solutions for the D-S system.展开更多
Semidiscretization in space of nonlinear degenerate parabolic equations of nondivergent form is presented, under zero Dirichlet boundary condition. It is shown that semidiscrete solutions blow up in finite time. In p...Semidiscretization in space of nonlinear degenerate parabolic equations of nondivergent form is presented, under zero Dirichlet boundary condition. It is shown that semidiscrete solutions blow up in finite time. In particular, the asymptotic behavior of blowing-up solutions, is discussed precisely.展开更多
基金Supported by the National Natural Science Foundation of China (No.10771151,No.10747148)
文摘This paper is concerned with the blow-up solutions of the Cauchy problem for Gross-Pitaevskii equation.In terms of Merle and Raphёel's arguments as well as Carles' transformation,the limiting profiles of blow-up solutions are obtained.In addition,the nonexistence of a strong limit at the blow-up time and the existence of L2 profile outside the blow-up point for the blow-up solutions are obtained.
基金Supported by National Natural Science Foundation of China(Grant No.11371267)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20125134120001)
文摘We study the blow-up solutions for the Davey-Stewartson system(D-S system, for short)in L2x(R2). First, we give the nonlinear profile decomposition of solutions for the D-S system. Then, we prove the existence of minimal mass blow-up solutions. Finally, by using the characteristic of minimal mass blow-up solutions, we obtain the limiting profile and a precisely mass concentration of L2 blow-up solutions for the D-S system.
文摘Semidiscretization in space of nonlinear degenerate parabolic equations of nondivergent form is presented, under zero Dirichlet boundary condition. It is shown that semidiscrete solutions blow up in finite time. In particular, the asymptotic behavior of blowing-up solutions, is discussed precisely.